

Curriculum Mapping: Computer Science Year 12-13

Year	Autumn 1.1	Autumn 1.2	Autumn 2.1	Autumn 2.2	Spring 1	Spring 2	Summer 1	Summer 2
	Getting started	Problem solving	Data representation	Hardware and software	Computer organisation and architecture	Communications, networks and consequences	Databases and software development	OOP
Year 12	Concepts/Tier 3 vocabulary algorithm, structured programming, data type, variables, constants, assignment, arithmetic operations, Boolean operators, sequence, selection, definite and indefinite iteration, top down design, modular programming, subroutine, procedure, function, parameter, argument, exception handling, global and local variables, field, record, binary file, text file, data structure	Concepts/Tier 3 vocabulary computational thinking, algorithm, simulation, enumeration, divide and conquer, top down design, hierarchy chart, test plan, erroneous data, trace table, abstraction, information hiding, procedural abstraction, functional abstraction, data abstraction, data abstraction, data abstraction, data abstraction, data abstraction, data abstraction, finite state machine, transition table	Concepts/Tier 3 vocabulary Natural, rational, irrational, hexadecimal, binary, signed and unsigned, kibi, mebi, gibi, ASCII, Unicode, parity, checksum, check digit, overflow, raster, bitmap, resolution, bit or colour depth, sample, MIDI, frequency, Hertz, lossy, lossless, compression, encryption, ciphertext, plaintext, cryptanalysis.	Concepts/Tier 3 vocabulary Hardware, general- purpose/special- purpose software, operating system, utility programs, defragmenter, virus checker, library program, translator, virtual machine, processor scheduling, interrupt, embedded system, machine code, assembly language, assembler, compiler, interpreter, bytecode, logic gate, truth table, Boolean algebra	Concepts/Tier 3 vocabulary Processor, main memory, address bus, data bus, control bus, I/O control bus, I/O controller, von Neumann, Harvard, addressable memory, stored program concept, fetch, decode, execute, arithmetic logic unit, control unit, clock, register, buffer, instruction set, opcode, operand, immediate addressing, direct addressing, machine-code, branch, logical bitwise operator, logical shift, assembly language, cores, RFID, polarisation, pulse, flash, block, page, transistors, latency.	Concepts Tier 3 vocabulary Serial transmission, parallel transmission, USB (Universal Serial Bus), synchronous transmission, start bit, stop bit, baud rate, bit rate, bandwidth, latency, protocol, star topology, network, client-server networking, peer-to- peer networking, Wi-Fi, wireless access point, WPA, WPA2, SSID, MAC, CSMA/CA, RTS/CTS, privacy.	Concepts Tier 3 vocabulary entity, attribute, identifier, primary key, composite primary key, foreign key, relationship, entity relationship (E-R) diagram, normalisation, relation, relational database, First Normal Form (1NF), Second Normal Form (2NF), Third Normal Form (3NF), partial dependency, non-key dependence, data integrity, SQL, client-server database, record locking, serialisation, timestamp ordering, commitment ordering, agile modelling, prototyping	Concepts Tier 3 vocabulary Object, class, attribute, method, encapsulation, information hiding, constructor, instantiation Inheritance, subclass, superclass, polymorphism, overriding, modifier, public, private, protected, class diagram, aggregation, composition, association, abstract method, virtual method, static method, interface.

Justification	Justification:	Justification:	Justification:	Justification:	Justification	Justification	Justification		
This unit covers the principles of	This unit describes what	This unit covers the	The unit begins with a lesson on	The unit begins by describing	Students learn about: Communications	The first two lessons cover the production of	These lessons cover the basics o		
structured	is meant by	representation of	hardware and	the internal	methods, including	a data model, entity	object-oriented		
programming in	"computation	data, six topics in	software and the	hardware	baud rate, bit rate,	definitions and entity	programming and		
Python, arrays,	al thinking"	this unit cover	classification of	components of a	bandwidth, latency	relationship diagram,	object-oriented		
subroutines,	and is	data	software. The	computer,	and protocols;	and normalisation to	design principles,		
parameter	designed to	representation of	role of an	different	Network topologies,	Third Normal Form. The	with practical		
passing and text	develop this	numbers, text,	operating system	architectures	including physical star	next two lessons cover	examples in		
and binary files.	skill with the aid	images and	is then covered,	and the stored	and logical bus;	the use of SQL to	Python		
	ormany	sound, with the	followed by	program	Client-server and	refrieve, update, insert			
	practical	inal iopic	lessons on the	fotob ovocuto	peer-10-peer	and delete data from			
	related to	aivina evamples	programming		networking, mileless	database and the			
	problem	of the uses of	languages as	explained in a	CSMA and SSID: The	creation of new tables			
	solving.	data	low-level and	detailed and	unit concludes with	Client server database			
	abstraction	compression and	hiah-level, and	practical way	two lessons on	and problems of			
	and algorithm	encryption.	programming	including the role	communications and	concurrent databases			
	design.		language	of the major	privacy and the	are also covered. The			
	-		translators. The	components	social, legal and	final lesson covers			
			last two topics	and dedicated	cultural issues	aspects on software			
			deal with logic	registers used by	presented by the use	development.			
			gates and	the processor.	of computers and				
			Boolean	Instruction sets	communication				
			algebra.	and addressing	methods in today's				
				are covered	world				
				machine code					
				and assembly					
				lanauaae					
				operations. The					
				function and					
				characteristics of					
				various external					
				hardware					
				devices and					
				storage methods					
				are explained in					
				topics					
				iopics.					
Assessment:									
All units have an e	end-of-unit test, whi	ch draws together sk	kills and knowledge f	from the previous less	sons.				
wider reading/C	uitural capital	without for stands and	to proport units of						
Inroughout KS5	inere are opport	Unities for students	to access varied	curriculum that is a	ampitious and goes be	yona the specification. F	rom the onset we		
tocus on ensurin	g that our studer	nts are aware of th	ie ethical, legal, ei	nvironmental, and	I cultural issues related	to computer science. Stu	Jaents are		

regularly reminded how to be respectful digital citizens. A solid understanding of how technology works from the inside out and how it affects the real world is vital for students to be able to succeed. Students in year 12 and 13 attend Computer Science in Action lectures.

	Autumn 1	Autumn 1-	Autumn 2	Spring 1	Spring 2	Summer 1
		2				
	Data Structures	Algorithms	Regular Languages	Non-exam assessment	The Internet	Functional programming and Big Data
	Concepts/Tier 3	Concepts/Tier	Concepts/Tier 3	Concepts/Tier 3	Concepts/Tier 3	Concepts/Tier 3 vocabulary
	vocabulary	3 vocabulary	vocabulary	vocabulary	vocabulary	first-class object,
	Elementary data	Recursion, call	Finite state	Analysis	Internet, World	functional composition, partial function application, higher-order
	type, abstract	stack, tree	machine, Mealy	Documented	Wide Web, URL,	functions, map, filter, fold, graph
	data type,	traversal, pre-	machine,	design	Internet registry,	
	encapsulation,	order, in-order,	transition, state	Technical	registrar, DNS,	
	information	post-order	transition table	solution	FDQN, Internet	
	hiding, static	traversal,	Set, member,	Testing	Protocol, packet,	
	data structure,	Big-O notation,	element, set	Evaluation	packet	
	dynamic, heap,	linear,	comprehension,		switching, router,	
	overnow,	polynomial,	compact		gateway, nop,	
	Underflow	exponential,	representation,		nedder, NIC,	
	Queue, circular	functions	membership,			
	queue, priority	iunclions,	Union,		proxy server,	
		timo	difforence		port, sidielui	
		complexity	subset proper		encryption	
	dequeue stack	bingry tree	subset Cartesian		symmetric	
	Last In First Out	search bubble	product infinite		asymmetric	
	(UEO) call stack	sort merge	finite countably		public private	
	stack frame	sort	infinite		key digital	
	Hashina hash	depth-first	cardinality		signature hash	
	table, collision.	traversal.	Regular		diaital	
	mid-square	breadth-first	Expressions,		certificate,	
	method, folding	traversal,	reaular		worm, Troian,	
	method,	optimisation	language,		malware, virus,	
	dictionary	problem,	decompose,		TCP, stack,	
	Graph, edge,	Dijkstra's,	Turing machine,		protocol, MAC	
	arc, vertex,	travelling	state transition		address, FTP, SSH,	
	adjacency	salesman	diagram, tape,		POP, SMTP, IMAP,	
	matrix,	problem (TSP),	read-write head,		server, browser,	
	adjacency list,	tractable and	halting, Universal		subnet mask,	
	Tree, root, child,	intractable	Turing machine,		DHCP, routable,	
	parent, subtree,	problems,	computable,		non-routable,	
	leaf node,	heuristic	Backus-Naur		NAT, port	
	binary, pre-	solution,	Form, pipe,		forwarding,	
3	order, in-order	computable	syntax diagram,		client server	
	and post-order	and non-	parsing, parse		model, API,	
	traversal	computable	tree, Infix, prefix,		CRUD, JSON,	
ă	vector, dot	problems,	postfix, Reverse		XML, REST, thick	
ъ.	product,	Halting	Polish Notation		client, thin client.	
-		problem				

Be the best you can be

Justification:	Justification:	Justification:	Justification:	Justification:	Justification:			
The unit gives	Searching and	After covering	The project	Internet functions	Function	1		
practical and	sorting	Mealy machines	allows students	including packet	programming is taught	1		
worked	algorithms are	in the first lesson,	to develop their	switching, DNS	using Haskell,			
examples of	covered in an	sets and regular	practical skills in	and the role of	accompanied by			
each of the	interactive and	expressions are	the context of	the router are	theory to enable			
different	practical way.	covered. The	solving a realistic	covered in the	students to answer	1		
abstract data	with reference	structure and use	problem or	first two topics of	exam questions on this	1		
structures	to Big-O	of Turing	carrvina out an	this unit.	topic. The final lesson			
including	notation in	machines that	investigation. The	Symmetric and	describes examples of			
aueues, stacks,	terms of time	perform simple	project is	asymmetric	Bia Data, its			
lists, araphs,	and space	computations	intended to be	encryption, and	application and			
trees, hash tables	complexity. It	are discussed	as much a	the use of diaital	benefits in areas such			
and dictionaries.	also covers the	and Backus-Naur	learnina	sianatures are	as healthcare and			
The function and	role of stack	form and syntax	experience as a	covered in the	medicine, business,			
practical	frames in	diaarams are	method of	following topic.	communication and			
application of	subroutine	explained. The	assessment:	Standard	many other fields.			
each data type	calls, and	last topic	students have	Application	,	1		
is discussed, with	recursive	covered is	the opportunity	Layer protocols		l		
pseudocode	techniques,	Reverse Polish	to work	such as SSH are				
and coded	putting these	notation with	independently	covered with				
program	into practice	students being	on a problem of	reference to the				
solutions for	with tree	given plenty of	interest over an	TCP/IP protocol				
relevant	traversals and	opportunity to	extended	stack.				
alaorithms	a depth-first	practise skills and	period, during	Subnetting,				
Python. Vectors	araph	techniques	which they can	DCHP and				
and dot	traversal.	throughout each	extend their	Network Address				
products and	Optimisation	lesson.	programming	Translation are				
their application	algorithms,		skills and deepen	covered in the				
are covered in a	such as		their	penultimate				
final topic.	Diikstra's		understanding of	topic, rounded				
	shortest path		computer	off with a final				
	algorithm are		science.	topic on web				
	covered along			CRUD and				
	with a			RESTful				
	complete			applications in				
	topic on the			relation to the				
	limits of			client server				
	computation.			model.				
	Assessment:			1			•	
	All units have an	end-of-unit test, whi	ch draws toaether sł	kills and knowledae f	rom the previous lessons.			
	Wider reading/Cultural capital							
	Throughout KS5 there are opportunities for students to access varied curriculum that is ambitious and goes beyond the specification. From the onset							
	we focus on ensuring that our students are aware of the ethical, legal, environmental, and cultural issues related to computer science. Students are							
	regularly reminded how to be respectful digital citizens. A solid understanding of how technology works from the inside out and how it affects the real							
	world is vital for students to be able to succeed. Students in year 12 and 13 attend Computer Science in Action lectures.							