

Curriculum Mapping: Biology Year 12-13

Year	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Module 2: Foundations in biology		Module 3: Exchange and transport		Module 4: Biodiversity, evolution and disease	
	Concepts/Tier 3 vocabulary	Concepts/Tier 3 vocabulary	Concepts/Tier 3 vocabulary	Concepts/Tier 3 vocabulary	Concepts/Tier 3 vocabulary	Concepts/Tier 3 vocabulary
	Cell structure	Nucleotides and nucleic	Exchange surfaces	Transport in plants	Communicable diseases,	Classification and
	Biology is the study of	acids	As animals become	As plants become larger	disease prevention and	evolution
	living organisms. Every	Nucleic acids are	larger and more active,	and more complex,	the immune system	Evolution has generated
	living organism is made	essential to heredity in	ventilation and gas	transport systems	Organisms are	a very wide variety of
	up of one or more cells,	living organisms.	exchange systems	become essential to	surrounded by	organisms. The fact that
	therefore understanding	Understanding the	become essential to	supply nutrients to, and	pathogens and have	all organisms share a
	the structure and	structure of nucleotides	supply oxygen to, and	remove waste from,	evolved defences	common ancestry allows
	function of the cell is a	and nucleic acids allows	remove carbon dioxide	individual cells. The	against them. Medical	them to be classified.
	fundamental concept in	an understanding of	from, their bodies.	supply of nutrients from	intervention can be used	Classification is an
2	the study of biology.	their roles in the storage	Ventilation and gas	the soil relies upon the	to support these natural	attempt to impose a
1	Since Robert Hooke	and use of genetic	exchange systems in	flow of water through a	defences. The	hierarchy on the
D	coined the phrase 'cells'	information and cell	mammals, bony fish and	vascular system, as does	mammalian immune	complex and dynamic
¥	in 1665, careful	metabolism.	insects are used as	the movement of the	system is introduced.	variety of life on Earth.
	observation using	Enzymes	examples of the	products of	Biodiversity	Classification systems
	microscopes has	Metabolism in living	properties and functions	photosynthesis.	Biodiversity refers to the	have changed and will
	revealed details of cell	organisms relies upon	of exchange surfaces in		variety and complexity	continue to change as
	structure and	enzyme controlled	animals.		of life. It is an important	our knowledge of the
	ultrastructure and	reactions. Knowledge of	Transport in animals		indicator in the study of	biology of organisms
	provided evidence to	how enzymes function	As animals become		habitats. Maintaining	develops.
	support hypotheses	and the factors that	larger and more active,		biodiversity is important	
	regarding the roles of	affect enzyme action has	transport systems		for many reasons.	
	cells and their organelles	improved our	become essential to		Actions to maintain	
	Biological molecules	understanding of	supply nutrients to, and		biodiversity must be	
	The cells of all living	biological processes and	remove waste from,		taken at local, national	
	organisms are composed	increased our use of	individual cells.		and global levels.	
	of biological molecules.	enzymes in industry.	Controlling the supply of			
	Proteins, carbohydrates		nutrients and removal of			
	and lipids are three of		waste requires the			

the key groups of	Cell division cell	coordinated activity of		
hiological	diversity and collular	the heart and singulatory		
biological				
macromolecules that are	organisation	system.		
essential for life. A study	During the cell cycle,			
of the structure of these	genetic information is			
macromolecules allows	copied and passed to			
a better understanding	daughter cells.			
of their functions in	Microscopes can be			
living organisms.	used to view the			
Biological membranes	different stages of the			
Membranes are	cycle. In multicellular			
fundamental to the cell	organisms, stem cells			
theory. The structure of	are modified to produce			
the plasma membrane	many different types of			
allows cells to	specialised cell.			
communicate with each	Understanding how			
other. Understanding	stem cells can be			
this ability to	modified has huge			
communicate is	potential in medicine. To			
important as scientists	understand how a whole			
increasingly make use of	organism functions, it is			
membrane-bound	essential to appreciate			
receptors as sites for the	the importance of			
action of medicinal	cooperation between			
drugs. Understanding	cells, tissues, organs and			
how different	organ systems.			
substances enter cells is				
also crucial to the				
development of				
mechanisms for the				
administration of drugs.				
Ũ				

Justification:	Justification:	Justification:	Justification:	Justification:	Justification	
Justification: This module gives learners the opportunity to use microscopy to study the cell structure of a variety of organisms. Biologically important molecules such as carbohydrates, proteins, water and nucleic acids are studied with respect to their structure and function. The structure and mode of action of enzymes in catalysing biochemical reactions is studied. Membranes form barriers within, and at the surface of, cells. This module also considers the way in which the structure of membranes relates to the different methods by which molecules enter and leave cells and organelles. The division and subsequent specialisation of cells is studied, together with the potential for the therapeutic use of stem cells.	JUSTIFICation:	In this module, learners study the structure and function of gas exchange and transport systems in a range of animals and in terrestrial plants. The significance of surface area to volume ratio in determining the need for ventilation, gas exchange and transport systems in multicellular organisms is emphasised. The examples of terrestrial green plants and a range of animal phyla are used to illustrate the principle. Learners are expected to apply knowledge, understanding and other skills developed in this module to new situations and/or to solve related problems.	Justification:	In this module the learners study the biodiversity of organisms; how they are classified and the ways in which biodiversity can be measured. It serves as an introduction to ecology, emphasising practical techniques and an appreciation of the need to maintain biodiversity. The learners also gain an understanding of the variety of organisms that are pathogenic and the way in which plants and animals have evolved defences to deal with disease. The impact of the evolution of pathogens on the treatment of disease is also considered. The relationships between organisms are studied, considering variation, evolution and phylogeny.	Justification	

	Assessment: End of unit assessments, PAGs	Assessment: End of unit assessments, PAGs	Assessment: End of unit assessments, PAGs	Assessment: End of unit assessments, PAGs	Assessment: End of unit assessments, PAGs	Assessment: End of unit assessments, PAGs
	Wider reading/Cultural capital The A Level Biology A cou biological sciences, medici	rse will prepare learners for ne and biomedical sciences,	progression to undergradu veterinary science, agricult	ate study, enabling them to cure and related sectors.	enter a range of academic a	and vocational careers in
	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 13	Module 5: Communication, homeostasis and energy	Module 5: Communication, homeostasis and energy	Module 5: Communication, homeostasis and energy	Module 5: Communication, homeostasis and energy	Module 5: Communication, homeostasis and energy	Course complete

Module 6: Genetics,	Module 6: Genetics,	Module 6: Genetics,	Module 6: Genetics,	Module 6: Genetics,	
evolution and	evolution and	evolution and	evolution and	evolution and	
ecosystems	ecosystems	ecosystems	ecosystems	ecosystems	
Concepts/Tier 3 vocabulary Communication and homeostasis Organisms use both chemical and electrical systems to monitor and respond to any deviation from the body's steady state. Excretion as an example of homeostatic control The kidneys, liver and lungs are all involved in the removal of toxic products of metabolism from the blood and therefore contribute to homeostasis. The kidneys play a major role in the control of the water potential of the blood. The liver also metabolises some toxins that are ingested. Cellular control The way in which cells control metabolic reactions determines	Concepts/Tier 3 vocabulary Neuronal communication The stimulation of sensory receptors leads to the generation of an action potential in a neurone. Transmission between neurones takes place at synapses. Patterns of inheritance Isolating mechanisms can lead to the accumulation of different genetic information in populations, potentially leading to new species. Over a prolonged period of time, organisms have changed and some have become extinct. The theory of evolution explains these changes. Humans use artificial selection to produce similar changes in plants and animals.	Concepts/Tier 3 vocabulary Hormonal communication The ways in which specific hormones bring about their effects are used to exemplify endocrine communication and control. Type 1 diabetes is used as an example to demonstrate how medical technology is used to regulate the hormonal control systems. Plant and animal responses Plant responses to environmental changes are coordinated by hormones, some of which are important commercially. In animals, responding to changes in the environment is a complex and continuous process, involving	Concepts/Tier 3 vocabulary Respiration Respiration is the process whereby energy stored in complex organic molecules is transferred to ATP. ATP provides the immediate source of energy for biological processes. Cloning and biotechnology Farmers and growers exploit "natural" vegetative propagation in the production of uniform crops. Artificial clones of plants and animals can now be produced. Biotechnology is the industrial use of living organisms (or parts of living organisms) to produce food, drugs or other product.	Concepts/Tier 3 vocabulary Ecosystems Organisms do not live in isolation but engage in complex interactions, not just with other organisms but also with their environment. The efficiency of biomass transfer limits the number of organisms that can exist in a particular ecosystem. Ecosystems are dynamic and tend towards some form of climax community. Populations and sustainability There are many factors that determine the size of a population. For economic, social and ethical reasons ecosystems may need to be carefully managed. To support an increasing human population, we need to use biological	N/A

how organisms, grow,	nervous, hormonal and	resources in a	
develop and function.	muscular coordination.	sustainable way.	
	Photosynthesis		
	Photosynthesis is the		
	process whereby light		
	from the Sun is		
	harvested and used to		
	drive the production of		
	chemicals, including		
	ATP, and used to		
	synthesise large organic		
	molecules from		
	inorganic molecules.		
	-		
	Manipulating genomes		
	Genome sequencing		
	gives information about		
	the location of genes		
	and provides evidence		
	for the evolutionary links		
	between organisms.		
	Genetic engineering		
	involves the		
	manipulation of		
	naturally occurring		
	processes and enzymes.		
	The capacity to		
	manipulate genes has		
	many potential benefits,		
	but the implications of		
	genetic techniques are		
	subject to much public		
	debate		

					De tile dest jou eu
Justification:	Justification	Justification:	Justification:	Justification:	
Module 5	Module 6				
It is important that	This module covers the				
organisms, both plants	role of genes in				
and animals are able to	controlling coll function				
respond to stimuli. This	and development				
is achieved by	Heredity and the				
communication within	mechanisms of				
the body, which may be	evolution and speciation				
chemical and/or	are also covered. Some				
electrical. Both systems	of the practical				
are covered in detail in	techniques used to				
this module.	manipulate DNA such as				
Communication is also	sequencing and				
fundamental to	amplification are				
homeostasis with	considered and their				
control of temperature,	therapeutic medical use.				
blood sugar and blood	The use of				
water potential being	hiotechnology is also				
studied as examples. In	covered Both of these				
this module, the	have associated ethical				
biochemical pathways of	considerations and it is				
photosynthesis and	important that learners				
respiration are	develop a balanced				
considered, with an	understanding of such				
emphasis on the	issues. Learners gain an				
formation and use of	appreciation of the role				
ATP as the source of	of microorganisms in				
energy for biochemical	recycling materials				
processes and synthesis	within the environment				
of biological molecules.	and maintaining balance				
	within ecosystems. The				
	need to conserve				
	environmental resources				

Wider reading/Cultural capita The A Level Biology A cou biological sciences, medic	rse will prepare learners for ine and biomedical sciences	progression to undergrad , veterinary science, agricu	uate study, enabling them t Ilture and related sectors.	o enter a range of academic a	and vocational careers in
Assessment: End of unit assessments, PAGs	Assessment: End of unit assessments, PAGs	Assessment: End of unit assessments, PAGs	Assessment: End of unit assessments, PAGs	Assessment: End of unit assessments, PAGs	N/A
	in a sustainable fashion is considered, whilst appreciating the potential conflict arising from the needs of an increasing human population. Learners also consider the impacts of human activities on the natural environment and biodiversity				