

Curriculum Mapping: Physics Year 12-13

Year	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Module 2: Foundations of physics	Module 3: Forces and moton			Module 4: Electrons, waves and photons	
	Concepts/Tier 3 vocabulary	Concepts/Tier 3 vocabulary	Concepts/Tier 3 vocabulary	Concepts/Tier 3 vocabulary	Concepts/Tier 3 vocabulary	Concepts/Tier 3 vocabulary
	Physical quantities and	Motion	Forces in action	Materials	Charge and current	Electrical circuits
	units	This section provides	This section provides	This section examines	This short section	This section provides
	This section provides	knowledge and	knowledge and	the physical properties	introduces the ideas of	knowledge and
	knowledge and	understanding of key	understanding of the	of springs and materials.	charge and current.	understanding of
	understanding of	ideas used to describe	motion of an object	Learners can carry out a	Understanding electric	electrical circuits,
	physical quantities and	and analyse the motion	when it experiences	range of experimental	current is essential when	internal resistance and
	units.	of objects in both one-	several forces and also	work to enhance their	dealing with electrical	potential dividers. LDRs
	Making measurements	dimension and in two-	the equilibrium of an	knowledge and skills,	circuits. This section	and thermistors are
	and analysing data	dimensions. It also	object. Learners will also	including the	does not lend itself to	used to show how
12	This section provides	provides learners with	learn how pressure	management of risks	practical work but to	changes in light intensity
	knowledge and	opportunities to develop	differences give rise to	and analysis of data to	introducing important	and temperature
Year	understanding of	their analytical and	an upthrust on an object	provide evidence for	ideas. The continuity	respectively can be
×	physical measurements	experimental skills. The	in a fluid. There are	relationships between	equation (I = Anev) is	monitored using
	and treatment of errors	motion of a variety of	opportunities to	physical quantities.	developed using these	potential dividers. Setng
	and uncertainties.	objects can be analysed	consider contemporary	There are opportunities	key ideas. This section	up electrical circuits,
	Nature of quantities	using ICT or data-logging	applications of terminal	to consider the selection	concludes with	including potential
	This section provides	techniques. Learners	velocity, moments,	of appropriate materials	categorising all materials	divider circuits, provides
	knowledge and	also have the	couples, pressure, and	for practical applications	in terms of their ability	an ideal way of
	understanding of scalars	opportunity to analyse	Archimedes principle	Newton's laws of	to conduct.	enhancing experimental
	and vectors quantities.	and interpret	Work, energy and	motion and momentum	Energy, power and	skills, understanding
	Vector quantities add	experimental data by	power	This section provides	resistance	electrical concepts and
	and subtract very	recognising relationships	Words like energy,	knowledge and	This section provides	managing risks when
	differently to scalar	between physical	power and work have	understanding of Newton's laws –	knowledge and	using power supplies.
	quantities; hence it is	quantities. The analysis	very precise meaning in	fundamental laws that	understanding of	Learners are encouraged to communicate
	important to know	of motion gives many	physics. In this section		electrical symbols,	
	whether a quantity is a	opportunities to link to How Science Works.	the important link between work done and	can be used to predict the motion of all	electromotive force,	scientific ideas using
	vector or a scalar.				potential difference,	appropriate
	1	Examples relate to	energy is explored.	colliding or interacting	resistivity and power.	terminology. This

 				Be the best you ca
detecting the speed of	Learners have the	objects in applications	The scientific vocabulary	section provides ample
moving vehicles,	opportunity to apply the	such as sport. Newton's	developed here is a	opportunities for
stopping distances and	important principle of	law can also be used to	prerequisite for	learners to design
freefall	conservation of energy	understand some of the	understanding electrical	circuits and carry out
	to a range of situations.	safety features in cars,	circuits. There is a desire	appropriate testing for
	The analysis of energy	such as air bags, and to	to use energy saving	faults and there are
	transfers provides the	evaluate the benefits	devices, such as LED	opportunities to study
	opportunity for	and risks of such	lamps, in homes.	the many applications of
	calculations of efficiency	features. Learners	Learners have the	electrical circuits
	and the subsequent	should be aware that	opportunity to	Waves
	evaluation of issues	the introduction of	understand the link	This section provides
	relating to the individual	mandatory safety	between environmental	knowledge and
	and society	features in cars is a	damage from power	understanding of wave
		consequence of the	stations and the impetus	properties,
		scientific community	to use energy saving	electromagnetic waves,
		analysing the forces	devices in the home and	superposition and
		involved in collisions and	how customers can	stationary waves. The
		investigating potential	make informed decisions	wavelength of visible
		solutions to reduce the	when buying domestic	light is too small to be
		likelihood of personal	appliances	measured directly using
		injury .		a ruler. However,
				superposition
				experiments can be
				done in the laboratory
				to determine
				wavelength of visible
				light using a laser and a
				double slit. There are
				opportunities to discuss
				how the double-slit
				experiment
				demonstrated the wave-
				like behaviour of light
				Quantum physics
				This section provides
				knowledge and
			1	KIIOWIEUge allu

 I	 Be the best	
	understanding of	
	photons, the	
	photoelectric effect, de	е
	Broglie waves and	
	wave–particle duality. I	In
	the photoelectric effect	:t
	experiment,	
	electromagnetic waves	5
	are used to eject surfac	ce
	electrons from metals.	
	The electrons are	
	ejected instantaneously	y
	and their energy is	-
	independent of the	
	intensity of the	
	radiation. The wave	
	model is unable to	
	explain the interaction	
	of these waves with	
	mater. This single	
	experiment led to the	
	development of the	
	photon model and was	;
	the cornerstone of	
	quantum physics.	
	Learners have the	
	opportunity to carry ou	Jt
	internet research into	
	how the ideas of	
	quantum physics	
	developed and how	
	scientific community	
	validates the integrity o	of
	new knowledge before	
	its acceptance	

			Be the best you ca		
Justification:	Justification:	Justification:	Justification:	Justification:	Justification
The aim of this module	The term force is			The aim of this module	
is to introduce	generally used to			is to ultimately	
important conventions	indicate a push or a pull.			introduce key ideas of	
and ideas that permeate	It is difficult to give a			quantum physics.	
the fabric of physics.	proper definition for a			Electromagnetic waves	
Understanding of	force, but in physics we			(e.g. light) have a dual	
physical quantities, S.I.	can easily describe what			nature. They exhibit	
units, scalars and vectors	a force can do. A			both wave and particle-	
helps physicists to	resultant force acting on			like behaviour. The	
effectively communicate	an object can accelerate			wave-particle dual	
their ideas within the	the object in a specific			nature is also found to	
scientific community	direction. The			be characteristic of all	
scientine community	subsequent motion of			particles (e.g. electrons).	
	the object can be			Before any sophisticated	
	analysed using			work can be done on	
	equations of motion.			quantum physics,	
	Several forces acting on			learners need to	
	an object can prevent			appreciate what	
	the object from either			electrons are and how	
	moving or rotating.			they behave in electrical	
	Forces can also change			circuits. A basic	
	the shape of an object.			understanding of wave	
	There are many other			properties is also	
	things that forces can			required. In this module,	
	do. In this module,			learners will learn about	
	learners will learn how			electrons, electric	
	to model the motion of			current, electrical	
	objects using			circuits, wave	
	mathematics,			properties,	
	understand the effect				
				electromagnetic waves	
	forces have on objects,			and, of course, quantum	
	learn about the			physics.	
	important connection				
	between force and				

 Thermal physics	Gravitational fields	Capacitors	Electromagnetism	Medical imaging	Be the best
This section provides	This section provides	This section introduces	This section provides	This section provides	
knowledge and	knowledge and	the basic properties of	knowledge and	knowledge and	
understanding of	understanding of	capacitors and how they	understanding of	understanding of X-rays,	
temperature, mater,	Newton's law of	are used in electrical	magnetic fields, motion	CAT scans, PET scans	
specific heat capacity	gravitation, planetary	circuits. The use of	of charged particles in	and ultrasound scans.	
and specific latent heat	motion and gravitational	capacitors as a source of	magnetic fields, Lenz's	This section shows how	
with contexts involving	potential and energy.	electrical energy is then	law and Faraday's law.	the developments in	
heat transfer and	Newton's law of	developed. This section	The application of	medical imaging have	
change of phase.	gravitation can be used	introduces the	Faraday's law may be	led to a number of	
Experimental work can	to predict the motion of	mathematics of	used to demonstrate	valuable non-invasive	
be carried out to safely	orbiting satellites,	exponential decay,	how science has	techniques used in	
investigate specific heat	planets and even why	which is also required	benefited society with	hospitals. Not all	
capacity of materials. It	some objects in our	for the decay of	important devices such	hospitals in this country	
also provides an	Solar system have very	radioactive nuclei.	as generators and	are equipped with	
opportunity to discuss	little atmosphere with	Experimental work	transformers.	complex scanners.	
how Newton's laws can	the opportunity to	provides an excellent	Transformers are used in	Learners have the	
be used to model the	analyse evidence and	way to understand the	the transmission of	chance to discuss the	
behaviour of gases and	look at causal	behaviour of capacitors	electrical energy using	ethical issues in the	
significant opportunities	relationships.	in electrical circuits and	the national grid and are	treatment of humans	
for the analysis and	Geostationary satellites	the management of	an integral part of many	and the ways in which	
interpretation of data	have done much to	safety and risks when	electrical devices in our	society uses science to	
Circular motion	improve	using power supplies.	homes. The application	inform decision making	
There are many	telecommunications	The varied uses of	of Lenz's law allows	intorni decision making	
examples of objects	around the world. They	capacitors give the	discussion of the use of		
travelling at constant	are expensive;	opportunity for the	scientific knowledge to		
speed in circles, e.g.	governments and	consideration of their	present a scientific		
planets, artificial	industry have to make	use in many practical	argument		
satellites, charged	difficult decisions when	applications	Nuclear and particle		
particles in a magnetic	building new ones.	Electric fields	physics		
field, etc. The physics in	Learners have the	This section provides	This section provides		
all these cases can be	opportunity to discuss	knowledge and	knowledge and		
described and analysed	the societal benefits of	understanding of	understanding of the		
using the ideas	satellites and the risks	Coulomb's law, uniform	atom, nucleus,		
developed by Newton.	they pose when	electric fields, electric	fundamental particles,		
This section provides	accidents do occur	potential and energy	radioactivity, fission and		

Be the best you can be

					Be the best you o
knowledge and	Astrophysics and		fusion. Nuclear power		
understanding of	cosmology		stations provide a		
circular motion and	This section provides		significant fraction of		
important concepts such	knowledge and		the energy needs of		
as centripetal force and	understanding of stars,		many countries. They		
acceleration	Wien's displacement		are expensive;		
	law, Stefan's law,		governments have to		
	Hubble's law and the Big		make difficult decisions		
	Bang. Learners have the		when building new ones.		
	opportunity to		The building of nuclear		
	appreciate how scientific		power stations can be		
	ideas of the Big Bang		used to evaluate the		
	developed over time and		benefits and risks to		
	how its validity is		society. Ethical,		
	supported by research		environmental and		
	and experimental work		decision making issues		
	carried out by the		may also be discussed.		
	scientific community		The development of the		
			atomic model also		
			addresses issues of		
			scientific development		
			and validation		
Justification:	Justification	Justification:	Justification:	Justification:	
The aim of this module		In this module, learners			N/A
is to show the impact		will learn about			
Newtonian mechanics		capacitors, electric field,			
has on physics. The		electromagnetic, nuclear			
microscopic motion of		physics, particle physics			
atoms can be modelled		and medical imaging.			
using Newton's laws and					
hence provide us with					
an understanding of					
macroscopic quantities					
such as pressure and					
temperature. Newton's					

Wider reading/Cultural capito	1	1703			
End of unit assessments PAGS	End of unit assessments PAGS	End of unit assessments PAGS	End of unit assessments PAGS	End of unit assessments PAGS	N/A
Assessment:	Assessment:	Assessment:	Assessment:	Assessment:	
cosmology.					
field, astrophysics and					
oscillations, gravitational					
physics, circular motion,					
learn about thermal					
module, learners will					
of observation. In this					
advances in the means					
improved based on the					
how the development of the scientific model is					
such, it lends itself to the consideration of					
radiation from space. As					
the electromagnetic					
Universe by analysing					
and the expansion of the					
the intricacies of stars					
final section we explore					
distant galaxies. In the					
motion of planets and					
used to predict the					