
GCSE Computer Science
for AQA 8525

Educational
Computing
Services

Kevin R Bond

Institution licence - St Martins School Essex

GCSE Computer Science
for AQA 8525

Kevin R Bond

Educational Computing Services Ltd

Institution licence - St Martins School Essex

Institution licence - St Martins School Essex

About the author
Dr Kevin R Bond is an experienced author with a proven track record of successful writing
for AQA’s Computing specifications. Kevin has 24 years of examining experience. He also
has many more years of experience teaching Computing and Computer Science. Before
becoming a computer science teacher, he worked in industry as a senior development
engineer and systems analyst designing both hardware and software systems.

Structure of the book
The structure of this book follows closely the structure of AQA’s 8525 GCSE Computer Science
specification for first teaching from September 2020. The content of the book has been constructed
with the aim of promoting good teaching and learning, so where relevant practical activities have
been suggested and questions posed for the student to answer. The book includes stimulus material
to promote discussion and deeper thinking about the subject. Additional material to support
teaching and learning will be available from the publisher’s website. Please note that this additional
material has not been entered in an AQA approval process.

Institution licence - St Martins School Essex

Institution licence - St Martins School Essex

Published in 2020 by
Educational Computing Services Ltd
42 Mellstock Road
Aylesbury
Bucks
HP21 7NU
United Kingdom
Tel: 01296 433004
e-mail: mail@educational-computing.co.uk

Every effort has been made to trace copyright holders and to obtain their permission for the use
of copyrighted material. We apologise if any have been overlooked. The authors and publishers
will gladly receive information enabling them to rectify any reference or credit in future editions.

First published in 2020

ISBN 978-1-8381026-1-6

Text © Kevin R Bond 2020
Original illustrations © Kevin R Bond 2020
Cover photograph © Kevin R Bond 2020

The right of Kevin R Bond to be identified as author of this work has been asserted
by them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopy,
recording or any information storage retrieval system, without permission in
writing from the publisher or under licence from the Copyright Licensing Agency
Limited, of Saffron House, 6 -10 Kirby Street, London, EC1N 8TS.

Approval message from AQA

 The core content of this digital textbook has been approved by AQA for use with
our qualification. This means that we have checked that it broadly covers the
specification and that we are satisfied with the overall quality. We have also approved
the printed version of this book. We do not however check or approve any links or
any functionality. Full details of our approval process can be found on our website.

We approve print and digital textbooks because we know how important it is for teachers
and students to have the right resources to support their teaching and learning. However, the
publisher is ultimately responsible for the editorial control and quality of this digital book.

Please note that when teaching the GCSE (8520) course, you must refer to AQA’s
specification as your definitive source of information. While this book has been written to
match the specification, it cannot provide complete coverage of every aspect of the course.

A wide range of other useful resources can be found on the
relevant subject pages of our website: aqa.org.uk.

Institution licence - St Martins School Essex

http://aqa.org.uk

Acknowledgements
The author and publisher are grateful to the following for permission to reproduce images,
clipart and other copyright material in this book under licence or otherwise:

Chapter 1.1
Figure 1.1.1 Ball of wool Shutterstock / 59259781.
Figure 1.1.1 Woollen pullover Shutterstock / 85713035.
Figure 1.1.1 Head silhouette Shutterstock / 152509136
Table 1.1.1 Music stave Shutterstock / 85713035.
Figure 1.1.9 London underground map Reg. User No 16/E/3021/P Pulse Creative Ltd.

Chapter 1.2
Figure 1.2.1 Silhouette and flight of steps Shutterstock / 145794110.
Figure 1.2.2 Several flights of stairs Shutterstock / 349238483.
Figure 1.2.3 Lift Shutterstock / 63152726.

Chapter 2.3
Figure 2.3.2 Capstan Shutterstock / 381034510.

Chapter 2.6
Figure 2.6.1 Queue of people in silhouette Shutterstock / 253319245.

Chapter 2.7
Figure 2.7.1 Computer Shutterstock / 1226401.
Figure 2.7.1 Keyboard Shutterstock / 58335720.

Chapter 2.9
Figure 2.9.1 Computer Shutterstock / 329817896.

Chapter 3.3
Figure 3.3.1 Highway code signs are based on Highway code signs

© Crown copyright 2007, and are reproduced under Open Government Licence v3.0.
Figure 3.3.2 Communicating machines Shutterstock / 1226401.
Page 48 Tree stump Shutterstock / 97674011

Chapter 3.6
Figure 3.6.1 Digital camera Shutterstock / 107741804.
Figure 3.6.2 Mixing colours Shutterstock / 466868669.

Chapter 3.7
Page 68 Tuning fork Shutterstock / 216877381.
Figure 3.7.1 Oscilloscope Alamy / A24350.

Chapter 3.8
Page 73 Man on suitcase Shutterstock / 622465202.
Figure 3.8.2 Tree Shutterstock / 554825683.

Chapter 4.5.1
Figure 4.5.1.1 John von Neumann Los Alamos National Laboratory / http://www.lanl.gov/resources/web-policies/copyright-legal.php.
Figure 4.5.1.3 Papertape Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license / User: Poil~commonswiki.
Figure 4.5.1.4 ENIAC / U.S. Army photo, http://ftp.arl.army.mil/~mike/comphist/.

Chapter 4.5.2
Magnetic core Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license / Konstantin Lanzet.

Chapter 4.5.3
Figure 4.5.3.1 BIOS Shutterstock / 513290245.
Figure 4.5.3.1 CPU Shutterstock / 222009121.
Figure 4.5.3.5 Bottleneck Shutterstock / 275770565.
Figure 4.5.3.9 3-D scene rendering © 1995 Kwok Cheung Yeung now Dr Kwok Cheung Yeung.

Image from Kwok’s A level project 1995.
Chapter 4.5.5

Figure 4.5.5.5 Sony memory stick image
by KB Alpha (Own work) [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons.
Figure 4.5.5.5 SanDisk CompactFlash image courtesy of Western Digital Corporation.
Figure 4.5.5.8 Flash drive © D-Kuru/Wikimedia Commons
Figure 4.5.5.10 Flash drive innards Image reproduced with kind permission of StorageReview.com
Figure 4.5.5.11 Google data centre image reproduced with kind permission Google/Connie Zhou

Chapter 5
Figure 5.5 Reproduced with kind of permission of Claes-GÖran Andersson
Figure 5.17 Server Shutterstock /53738941

Chapter 6.2.2
Figure 6.2.2.6 Skull and crossbones road sign Shutterstock / 576781585
Page 6.2.2.7 Prisoner behind bars Shutterstock / 360621752
Page 6.2.2.7 Silhouette of a hacker Shutterstock / 515918593

Chapter 6.3
Figure 6.3.1 Reproduced with kind of permission of Luis von Ahn, Carnegie Mellon University
Figure 6.3.2 Reproduced with kind of permission of Google Inc.
Figure 6.3.3 Reproduced with kind of permission of Google Inc.
Figure 6.3.4 Reproduced with kind of permission of Computing At School

Chapter 8
Figure 8.2 Nike+ running watch and App (www.flickr.com/ivyfield/4762376623 CC BY 2.0)

Institution licence - St Martins School Essex

Contents
How to use this book xi
Introduction xiii
1.1 Representing algorithms 1

What is an algorithm? 1
Flowcharts 3
Pseudo-code 6
What is decomposition? 7
What is meant by abstraction? 8
Explaining simple algorithms in terms of their inputs, processing and outputs 13
Determining the purpose of simple algorithms 15

1.2 Efficiency of algorithms 16
More than one algorithm can be used to solve a problem 16
Comparing the efficiency of algorithms 16

1.3 Searching algorithms 21
Linear search 21
Binary search 23
Comparing linear and binary search algorithms 26

1.4 Sorting algorithms 28
Sorting 28
Bubble sort algorithm 28
Merge sort algorithm 33
Comparing and contrasting merge sort and bubble sort algorithms 35

2.1 Data types 38
Introduction to programming 38

2.2 Programming concepts 43
Variable declaration 43
Constant declaration 44
Assignment 45
Sequence 49
Selection 49
Subroutine 50
Procedures and functions 52
Function 54
Definite (count-controlled) and indefinite (condition-controlled) iteration 59
Nested selection statements 65
Nested iteration statements 66
Using meaningful identifier names 67

2.3 Arithmetic operations in a programming language 70
Addition/Subtraction/Multiplication 70
Real division 70
Integer division 71

2.4 Relational operators in a programming language 74
Relational operators 74

2.5 Boolean operations in a programming language 76
Boolean operators 76

2.6 Data structures 79
The concept of data structures 79
One-dimensional array 80
Multi-dimensional arrays 87
Use of records 91

2.7 Input/output and file handling 92
Input/output 92

2.8 String-handling operations 101
Strings 101
String operations 101
Position 110
Concatenation 110
Character → character code 110
Character code → character 111
String conversion operations 112

Institution licence - St Martins School Essex

2.9 Random number generation in a programming language 121
Random number generation 121
Random number generators in programming languages 122

2.10a Subroutines (procedures/functions) 124
Concept of subroutines 124
Advantages of using subroutines in programs 125
Using parameters to pass data within programs 126
Using subroutines that return values to the calling routine 130
Declaring local variables 132
Using local variables 133
Why use local variables? 133

2.10b Structured programming 135
The structured approach to program design and construction 135
Hierarchy charts 140
Advantages of structured programming 143

2.11 Robust and secure programming 145
Be able to write simple data validation routines 145
Program errors - syntax and logic 155

3.1 Number bases 157
Meaning of number base 157
Decimal (base 10) 157
Binary (base 2) 157
Hexadecimal (base 16) 158
Binary is used to represent all data and instructions 159

3.2 Converting between number bases 161
Converting from decimal to binary 161
Method 1 161
Method 2 - the method of successive division 161
Converting from binary to decimal 162
Converting from decimal to hexadecimal 162
Converting from hexadecimal to decimal 162
Converting from hexadecimal to binary 162
Converting from binary to hexadecimal 163
Using binary to represent decimal whole numbers 163
Using hexadecimal to represent decimal whole numbers 164

3.3 Units of information 165
Information 165
Powers of 10 166
Quantities of bytes 166
Powers of 2 167

3.4 Binary arithmetic 169
Adding two binary integers 169
Adding three binary integers 171
Shifting bits in a binary number 172
Situations where binary shifts are used 173

3.5 Character encoding 176
ASCII 176
Unicode 178
Character form of a decimal digit 179
Grouping of character codes 179

3.6 Representing images 181
What is a pixel? 181
Displaying an image 182
Image size of a bitmap 182
Colour depth of a bitmap 183
How does a bitmap represent an image? 184
Bitmap image file sizes 184
Converting a digitised black and white image into binary data 185
Converting binary data into a bitmap image 186

3.7 Representing sound 187
Sound is analogue 187
Recording sound in digital form 188
Sampling rate 189

Institution licence - St Martins School Essex

Sample resolution 190
Calculating sound file sizes 190

3.8 Data compression 192
What is data compression and why compress? 192
Huffman coding 193
Run length encoding (RLE) 198

4.1 Hardware and software 200
What is hardware? 200
What is software? 200

4.2 Boolean logic 201
Background to logic gates 201
Truth tables 202
Logic gates 203
Constructing truth tables for simple logic circuits 206
Creating logic gate circuits 207
Boolean variables 210
Boolean expressions 211
Examples 212

4.3 Software classification 215
What is system software? 215
What is application software? 215
Understand the need for, and functions of, operating systems (OS) and utility programs 216

4.4 Classification of programming languages and translators 219
Levels of programming language 219
Low-level programming languages 219
Advantages of programming in machine code and assembly language compared with HLL programming 222
Disadvantages of programming in machine code and assembly language compared with HLL programming 223
Types of program translator 224
Role of an assembler 224
Role of a compiler 224
Role of an interpreter 225
The differences between compilation and interpretation 225
Situations in which assemblers, compilers and interpreters would be appropriate 226

4.5.1 Systems architecture 228
Von Neumann architecture 228
Characteristics of the von Neumann architecture 230
Von Neumann computer system as a collection of subsystems 231

4.5.2 Systems architecture 233
Main memory 233
System bus 237
Arithmetic and Logic Unit (ALU) 238
Control Unit 239
Clock 240

4.5.3 Systems architecture 242
Effect of clock speed on CPU performance 242
Effect of cache type and cache memory size on CPU performance (Cache type not in AQA specification 8525) 245
Effect of Number of processor cores on CPU performance 247

4.5.4 Systems architecture 250
Fetch-Execute cycle 250

4.5.5 Systems architecture 251
Different types of memory, what they are used for and why they are required 251
Differences between main memory and secondary storage 251
Differences between RAM and ROM 251
Why is secondary storage used? 251
Magnetic storage 252
Solid state storage 255
Flash-based solid-state disk (SSD) 256
Advantages and disadvantages of solid state, optical and magnetic storage 258
Cloud storage 259

5a Computer networks 263
What is a computer network? 263
The main types of computer network 264
LAN ownership 265

Institution licence - St Martins School Essex

Wired and wireless networks 267
Star network topology 268
Bus network topology 268
Network protocol 269

5b Network protocols 271
What is a network protocol? 271
Common network protocols 271
Internet Message Access Protocol (IMAP) 280

5c Network security 282
The need for and importance of network security 282
Network security methods 282

5d Four layer TCP/IP model 286
The four layer TCP/IP model 286
Application layer 287
Transport layer 287
Internet or IP (Internet Protocol) layer 288
Link layer 289

6.1 Cyber security threats 291
What is cyber security? 291

6.2 Social engineering threats 291
Unpatched and/or outdated code 298
Penetration testing 299

6.2.1 Social engineering 301
What is social engineering? 301
How to protect against social engineering 303
Blagging (pretexting) 304
Shouldering (or shoulder surfing) 304
Scenario 1 - stealing credentials 305
Scenario 2 - exploiting security vulnerabilities in web browsers 305
Phishing 305
Scenario 3 - malicious attachments 306
Scenario 4 - pop-up ads 306

6.2.2 Malicious code 309
Malware 309
Virus 311
Trojan 313
Spyware 315

6.3 Methods to detect and prevent cyber security threats 317
Biometric measures 317
Password systems 318
Automatic software updates 322

7.1 Relational databases 323
What is a database? 323
What is a relational database? 323
Modelling a relationship between two tables 324
Entity relationship diagram (Beyond 8525 specification) 325
Primary and foreign keys 325
Shorthand way of representing the structure of a table 326
Link tables 327
Types of database 328

7.2 Structured Query Language 330
Querying a database 330
Structured Query Language (SQL) 330
Retrieving data from a single table 330
Retrieving data from multiple tables 331
Relational or comparison operators for search condition 333
Deleting data in a single table 334
Inserting data in a single table 334
Updating data in a single table 335
SQL Tutorials 335

Institution licence - St Martins School Essex

8. Ethical impacts of digital technology 338
What is ethics? 338
The challenges facing legislators in the digital age 338
General Data Protection Regulation 2018 339
Geolocation- tracking you and your location 341
Investigatory Powers Act 2016 342
Computer based implants 346
Issues around copyright of algorithms (not in AQA specification 8525) 347
Theft of computer code (not in AQA specification 8525) 348
Cracking and hacking (not in AQA specification 8525) 348
Environmental impact 348
Cyber security 350
Cloud storage 350
Autonomous vehicles 350

Index 365

Institution licence - St Martins School Essex

Institution licence - St Martins School Essex

xi

Task

Questions

Programming tasks

Key fact Key point

 ■ How to use this book
The structure and content of this textbook maps to sections 3.1 to 3.8 of AQA’s GCSE Computer Science
specification (8525). For example, the chapter number 1.1 corresponds to specification section 3.1.1. The chapter title
is Representing algorithms. The chapters in the book do not use the leading 3 as this designates Subject content –
GCSE in the specification.
Flipped classroom
This textbook has been written with the flipped classroom approach very much in mind. This approach reverses the
conventional classroom lesson and homework model of teaching. Instead, chapters in this textbook should be used to
prepare for a lesson so that classroom-time can be devoted to exercises, projects, and discussions.

The features in this book include:
Learning objectives
Learning objectives linked to the requirements of the specification are specified at the beginning of each chapter.

Key concept

Extension Material

Key principle

Information Background

Concepts that you will need to understand and to be able to define or
explain are highlighted in blue and emboldened, e.g. Integers. The same
concepts appear in the glossary for ease of reference.
Principles that you will need to understand and to be able to define or
explain are highlighted in blue and emboldened, e.g. Abstraction. The
same principles appear in the glossary for ease of reference.

Facts and points that are useful to know because they aid in understanding concepts and principles are highlighted in
blue and emboldened, e.g. Whole number: Whole number is another name for an integer number.

References information that has the potential to assist and contribute to a student’s learning, e.g. Read Section
4.4.2 for more background on the arithmetic and logic unit. Background knowledge that could also contribute to a
student’s learning.

Did you know?

“Did you know?” - interesting facts to enliven learning. “Extension Material” - content that lies beyond the
specification.

Activity to deepen understanding and reinforce learning.

Practical activity involving the use of a programming language to deepen
understanding and reinforce learning of concepts and principles.

Short questions that probe and develop your understanding of concepts
and principles as well as creating opportunities to apply and reinforce your
knowledge and skills. ■ Web links for this book

Resources, solutions to questions, errata and the URLs of all websites referenced in this book are recorded at
www.educational-computing.co.uk/aqacs/gcsecs8525.html. Past papers and mark schemes are available from

Educational Computing Services are not responsible for third party content online, there may be some changes to this
content that are outside our control. If you find that a Web link doesn’t work please email webadmin@educational-
computing.co.uk with the details and we will endeavour to fix the problem or to provide an alternative. Please also
note that these links are not AQA approved.

https://www.aqa.org.uk/subjects/computer-science-and-it/gcse/computer-science-8525/assessment-resources

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk/aqacs/gcsecs8525.html
https://www.aqa.org.uk/subjects/computer-science-and-it/gcse/computer-science-8525/assessment-resources

Institution licence - St Martins School Essex

xiii

Introduction
If you are reading this book then you will already have
chosen to be a part of an exciting future, for Computer
Science is at the heart of an information processing
revolution. This revolution applies not just to seeking
patterns of meaning in data accumulated on an
unprecedented scale by the huge growth in connected
computing devices but also the realisation that all
forms of life are controlled by genetic codes. Genetic
codes are instructions in a procedural information sense
which together with the environment that they inhabit
control and guide the development of organisms.

Computer scientists concern themselves with
• representations of information in patterns of

symbols, known as data or data representations,
• the most appropriate representation for this data
• the procedures in the form of instructions

that can transform this data into new forms of
information.

The procedures themselves are also a form of
information of an instructional kind.

The key process in Computer Science is abstraction
which means building models which represent aspects
of behaviour in the real-world which are of interest.
For example, if we wanted to build an automated
recommendation system for an online book store, we
might choose to record the types of book and number
of each type purchased as well as details that identify
the respective customer.

Computer Science is not alone in building abstractions,
mathematics and the natural sciences also build
abstractions but their models only serve to describe and
explain whereas Computer Science must, in addition,
perform actions on and with the data that has been
modelled if it is to solve problems. These actions are
described by algorithms or step-by-step instructions
which form what is called the automation stage of
problem solving. Whilst it is true that automation of
tasks existed before Computer Science, their nature
involved concrete, real-world objects, e.g. the Jacquard
loom, not informational abstractions such as an online
book recommendation system.

So far it has not been necessary to mention digital
computers. Digital computers are just the current
means by which algorithms can be implemented to
execute on data. Both algorithms and the models on
which they act need to be implemented: algorithms in
the form of code or instructions that a digital computer
can understand, i.e. a computer program; models in
data structures in a programming language.

Section 1 is largely about the fundamentals of
algorithms, their efficiency, and two types of
algorithms: searching algorithms and sorting
algorithms.
Section 2 is about programming.
Section 3 is about fundamentals of data representation.
Section 4 is about computer systems, in particular

• What is hardware and what is software
• Boolean logic and logic gates, the building bricks

of hardware
• Software classification and translators
• Systems architecture.

Section 5 is about fundamentals of computer networks.
Section 6 is about fundamentals of cyber security, in
particular

• Cyber security threats
• Social engineering
• Malicious code
• Methods to detect and prevent cyber security

threats.
Section 7 is about relational databases and Structured
Query Language (SQL).
Section 8 is about Ethical, legal and environmental
impacts of digital technology on wider society,
including issues of privacy.
This textbook covers Python (version 3), C# and
VB.NET, the programming languages supported by
AQA for examinations from 2022 onwards.
In addition, it also covers programming languages Java
and Pascal/Delphi.

Institution licence - St Martins School Essex

Institution licence - St Martins School Essex

1

 ■ 1.1 Representing algorithms
What is an algorithm?
An algorithm is a precise description of steps necessary to accomplish a certain
task or solve a particular problem. We call the collection of steps a method or
procedure.
The notion of an algorithm is not limited to computer science.
Table 1.1.1 shows some fields of human activity in which algorithms are used.

In each case the process is carried out by a human being.
Figure 1.1.1 shows that the process of knitting a cardigan consists of

• an input - balls of wool of a particular colour and yarn
• an output - the finished cardigan
• a processor - a human
• a precise finite sequence of steps expressed in a code which the

processor (in this case a human) can interpret

Learning objectives:

 ■ Understand and explain the
term algorithm

 ■ Understand and explain the
term decomposition

 ■ Understand and explain the
term abstraction

 ■ Use a systematic approach to
problem solving and algorithm
creation representing those
algorithms using pseudo-code,
program code and flowcharts

 ■ Explain simple algorithms
in terms of their inputs,
processing and outputs

 ■ Determine the purpose of
simple algorithms.

1 Fundamentals of algorithms
1 Fundamentals of algorithms

Process Algorithm Example steps
Knitting a cardigan Knitting pattern 1st row: Pearl9, Knit2,

...
Putting together flat
pack furniture Assembly instructions Screw side panel to

front panel

Bisecting an angle with
compass and ruler Drawing instructions

Place the point of the
compass on A, and
swing an arc ED

Playing music Musical score

Table 1.1.1 Some fields of human activity in which algorithms are used

Input

Figure 1.1.1 The process of knitting a cardigan

1st row: P9 (11-12-15-
16), K8, C6B, K8,P2
(2-3-3-4), K6, ...
2nd row: K9 (11-12-15-
16), P2, ...

Output

Key concept

Algorithm:
A description, independent of
any programming language, of a
procedure that solves a problem
or task.
It consists of a precisely
described sequence of steps for
solving a problem or completing
a task.
The algorithm must terminate
and its action must be capable
of completing in a finite amount
of time.

Key concept

Sequence:
Consecutive steps or groups of
steps processed one after another
in the order that they arise.

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

2

An algorithm is a method for solving a problem (a task).
Interesting algorithms are ones which involve repeating instructions many times, something which a digital
computer is capable of doing.

All but the simplest of algorithms are challenging to design because:

• The description of the algorithm has to be absolutely unambiguous in the sense that different
interpretations are excluded

• Each application of the algorithm for particular given inputs/problem instance has to reach the same
result

• An algorithm must be designed in a such a way that it works correctly for each of the possible inputs/
problem instances and finishes in a finite time

• An algorithm may have many problem instances as possible inputs, too many for it to be possible to
test all of them.

Most cooking recipes are not algorithms. They are expressed too imprecisely and rely too much on the knowledge,
experience and skill of the cook to be correctly interpreted. A less experienced cook may easily misinterpret the
recipe’s instructions or worse still not understand some. The range of input is also limited.

Tasks
This task illustrates the difficulty of writing an algorithm which is not open to misinterpretation.
Using pen/pencil and paper execute the following instructions by hand:
1. Draw a diagonal line

2. Draw another diagonal line connected to the top of the first one

3. Draw a straight line from the point where the diagonal lines meet

4. Draw a horizontal line over the straight line

5. At the bottom of the straight line, draw a curvy line

6. Draw a diagonal line from the bottom of the first diagonal to the straight line

7. Draw a diagonal line from the bottom of the second diagonal to the straight line

What object have you drawn?

Compare your result with a friend’s.

(CSInside, Algorithm Development, reproduced with kind permission of Professor Quintin Cutts, Glasgow university)

Write an algorithm to log into a school computer.

1

2

Institution licence - St Martins School Essex

1.1 Representing algorithms

3

Flowcharts
A flowchart is a way of expressing an algorithm.

A flowchart expresses an algorithm in a diagram such as shown in Figure 1.1.2.

This flowchart is equivalent to the sequence of operations expressed in pseudo-
code1, a compact, informal language, as follows

Turn on red light

Wait 30 seconds

Turn off red light

Just as a programmer might use pseudo-code to plan the sequence of operations
in a program before writing it, so a programmer could instead use a flowchart.

A flowchart expresses the logic of an algorithm using flowchart symbols or basic
elements shown in Figure 1.1.3.

A flowchart is interpreted by reading it from top to bottom, i.e. from Start to
Stop.

There are seven basic elements or symbols commonly used in flowcharts:

Terminal symbol: Indicates with Start and Stop the start and end of the
algorithm

Operation: Indicates any type of operation, e.g. Set variable x to the value 5

Input/Output: Indicates any input or output, e.g. INPUT x, OUTPUT y

Decision: Used to ask a question whose answer can be either TRUE or
FALSE (YES or NO), e.g. “Is x = 5?”. The flow path selected
which exits the decision diamond depends on the answer

Connector: Connectors are used to connect breaks in the flowchart, often
used to split a large flowchart into smaller sections that can fit
neatly onto a page

Control flow: Used to show the direction of flow - can be down the page, up
the page and across the page in either direction

Comment: Is not part of the logic but is commonly used to describe and make clear what is happening at a
particular place in the flowchart.

A flowchart can be drawn conveniently for simple problems only.

1 See later in the chapter for an explanation of pseudo-code.

Start

Stop

Turn on
red light

Wait 30
seconds

 Turn o�
red light

Red light on
display panel

Figure 1.1.2 Sequential
flowchart

Terminal - Start/Stop

Input/Output

Any operation

Connectors

Control �ow -
�ow lines

Any decision

Comments

3

3

Figure 1.1.3 Flowchart symbols

Information
Download and install the RAPTOR flowchart-based programming environment from
http://raptor.martincarlisle.com/.
Raptor enables the drawing of flowcharts (the symbols are slightly different in places from
the standard flowchart symbols). These flowcharts can then be executed in Raptor in run
mode or single-step mode. Behind the scenes, Raptor turns a flowchart into a form that
can be executed, i.e. a program.
Watch the introductory tutorial at https://www.youtube.com/watch?v=ZcAALK3movs

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

4

Figure 1.1.4 shows a branch (or jump) flowchart describing the sequence
of operations in a human activity which consists of reading and reviewing a
book.

This flowchart uses the decision flowchart element which has two
possible outflows (branches) and one inflow.

In the example, if the answer is No to the question, “Want to review?”, then
the flow follows the branch labelled No.

If the answer is Yes then the flow follows the branch labelled Yes.

Taking the No branch avoids the Write review operation.

Figure 1.1.5 shows a loop flowchart.

The part of the flowchart “Read next page” and “End of book?”, taken,
together, is an example of a loop.

A loop represents a part of the flowchart which may be repeated a definite or
indefinite number of times.

In this example, the loop repeats as many times as there are pages after the
first page. This flowchart assumes that the book has at least two pages.

Start

Stop

Read
next page

Read �rst
page of book

End of
book?

No

Yes

Return book

Loop?

Figure 1.1.5 Branch flowchart

Start

Stop

Read
book

Borrow
book

Want to
review?

No

Yes

Return
book

Write
review

Review?

Figure 1.1.4 Branch flowchart

Did you know?
When informal language fails
to communicate:
In the next section you will explore pseudo-code.
Pseudo-code is an informal language which you can
make up, i.e. write the rules for. It is very important
that your pseudo-code communicates what is to be
done.
AQA has specified a pseudo-code that seems to do its
job of communicating very well but you don't have to
stick to AQA's pseudo-code at
http://filestore.aqa.org.uk/resources/computing/AQA-
8525-TG-PC.PDF.
You can invent your own. But take care. The following
anecdote illustrates by analogy what can go wrong.
The famous physicist Paul Dirac once was writing on
a blackboard during a lecture and a student in the
class raised his hand and said, "I don't understand that
particular step you have just written down."
Dirac stood silent for a long time until the student
asked if Professor Dirac was going to answer the
question. To which Dirac said, "There was no
question."
Another lecturer might have interpreted the student's
informal way of asking a question and answered the
student but not Dirac. Dirac was a stickler for the
correct use of language.

Tasks
Redraw the flowchart in Figure 1.1.5 so that it
caters for a single-page book.

3

Institution licence - St Martins School Essex

http://filestore.aqa.org.uk/resources/computing/AQA-8525-TG-PC.PDF
http://filestore.aqa.org.uk/resources/computing/AQA-8525-TG-PC.PDF

1.1 Representing algorithms

5

Figure 1.1.6 shows a simple problem which uses a loop, a loop
counter, i, and an output operation, OUTPUT i.

The loop counter i is first initialised to 0 (i ← 0).

Its value is then increased by 1 from 0 to 1 (i ← i + 1).

Next, this value is outputted (the meaning of outputted could be:
send the value to the computer monitor screen).

The value of i is checked next to see if it is 5 (Is i = 5?).

If it isn’t, the No branch is followed returning the flow to the
operation

i ← i + 1.

where the value of the loop counter i is increased by 1 from 1 to 2
(i ← i + 1) when i = 1.

This new value of i is then outputted.

Looping continues until i = 5.

The Yes branch is then followed and the flow stops.

Start

Stop

i ← i + 1

i ← 0

Is
i = 5?

No

Yes

Loop?OUTPUT i

Figure 1.1.6 Branch flowchart

Tasks

Watch the following YouTube videos and then, using Raptor, create the flowcharts demonstrated in the
videos.
All these flowcharts using standard symbols are downloadable to study in pdf format from

www.educational-computing.co.uk/GCSE/RaptorFlowchartExercises/TasksCh1.1.html.
“Run” these flowcharts as described in the video (a program is executed which is generated in each case
from the flowchart).
These exercises are a good introduction to several important programming concepts.

(a) https://www.youtube.com/watch?v=S9MimRICmKQ
(b) https://www.youtube.com/watch?v=LQ76hbyE3gM
(c) https://www.youtube.com/watch?v=lcVHOPou0UI
(d) https://www.youtube.com/watch?v=GCNbWOh3iDM
(e) https://www.youtube.com/watch?v=8BiWSXSMxyo
(f) https://www.youtube.com/watch?v=zt5-qMgPJt8
(g) https://www.youtube.com/watch?v=4b4aZ5GqAAM
(h) https://www.youtube.com/watch?v=XVrOG7qaXgw
(i) https://www.youtube.com/watch?v=5AP4EpLSwS8
(j) https://www.youtube.com/watch?v=OnQ87Dw14U4
(k) https://www.youtube.com/watch?v=kXxAGX0__Vo
(l) https://www.youtube.com/watch?v=k0blfWj8M4M

4

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

6

Pseudo-code
Pseudo-code is a programming-like informal language which is employed to
communicate a solution to a problem in a way that is independent of any
particular programming language (programming languages are formal languages).

We can express an algorithm in pseudo-code before programming it in a
particular programming language to create a program (a program is a sequence of
instructions that can be interpreted either in text form or in 1s and 0s form by an
electronic computer).

Figure 1.1.7 shows the steps (algorithm) expressed in a pseudo-code to swap the
values in two variables, x and y before outputting the value of y.

There is no standard pseudo-code, that is why it is labelled informal.

This particular pseudo-code uses the symbol ← for an assignment operation,
e.g. x ← 6 assigns the value 6 to the variable x.

Equally it could have used pseudo-code Set x to 6 for the assignment
operation. You may invent your own pseudo-code. The most important thing to
bear in mind is communication, i.e. “does your pseudo-code communicate steps
that can be understood and easily followed?”.

The pseudo-code that will be used in AQA’s exam question papers can be
downloaded from

http://filestore.aqa.org.uk/resources/computing/AQA-8525-TG-PC.PDF

The pseudo-code given in Figure 1.1.7 is interpreted as
follows:
If variable x contains 6 and variable y, 3, for example,
then x will end up containing 3 and y, 6 after following
(executing) these steps. The value 6 is then outputted.

Table 1.1.2 shows how the state of the variables x, y, and
Temp changes, step-by-step.

The steps in a pseudo-code to swap the values
in two variables x and y using a temporary

variable temp before outputting the value of y
Temp ← x

x ← y

y ← Temp

OUTPUT y

Figure 1.1.7 The steps expressed in pseudo-
code to swap the values in two variables

Key concept
Pseudo-code:
Pseudo-code is a programming-
like language which is employed
to communicate a solution
to a problem in a way that is
independent of any particular
production programming
language.

Key concept
Variable:
A variable can be thought of as
a container for a value, e.g. the
integer 6.
Like a physical container, a
variable may be empty in which
case we say that its value is
undefined.

Key concept
Assignment operation:
An operation which replaces the
value contained by a variable
with another value,
e.g. if variable y contains 3 then

the assignment operation y ← 6
replaces the 3 with 6.

Key concept
Assignment operator:

The pseudo-code symbol ← is
often used for the assignment
operator.

Table 1.1.2 States of x, y and Temp whilst
stepping through pseudo-code

Step x y Temp

 Temp ← x
Before 6 3 ?

After 6 3 6

 x ← y
Before 6 3 6

After 3 3 6

 y ← Temp
Before 3 3 6

After 3 6 6

Institution licence - St Martins School Essex

1.1 Representing algorithms

7

What is decomposition?
Breaking big problems into smaller problems, or subproblems, is called
decomposition.

It may be far easier to deal with a number of smaller problems each of which
accomplishes a single identifiable task than one large problem.

If the subproblems can be solved directly then the decomposition is complete.

If not then subproblems are further divided and so on until small enough
problems result which identify a single task and which can be directly coded,
e.g. DrawCircle.

When decomposition is used to plan a solution it is called top-down design.

Example

Suppose the problem is calculating the area of a circle of a given radius.

Although this is a trivial example, it is intended to illustrate the process of
decomposition in a simple way.

Figure 1.1.8 shows the breaking of this problem into three trivial subproblems.

Key principle
Decomposition:
Decomposition means breaking
a problem into a number of
subproblems, so that each
subproblem accomplishes an
identifiable task, which itself
may be further subdivided.
The process should continue
until the subproblems are small
enough to each identify a single
task which can be directly coded
in a subroutine.

Key principle
Subroutine:
A well-designed subroutine is
one which contains only one
function, e.g. to return the
square of a given integer, or is
one that performs a logically-
related task, e.g. DrawCircle.

Problem:

Calculate the area of a circle of given radius r

Sub-problems:
Get radius

Calculate area

Output area

Figure 1.1.8 Decomposition of a problem into sub-problems

Tasks
Decompose the problem of calculating the circumference of a circle of radius r.

Decompose the problem of calculating the area of a rectangle of width w, and height h.

Decompose the problem of finding and showing the average of four numbers.

6

7

8

Tasks

Write the pseudo-code equivalent of each of the flowcharts considered in tasks 4(a) to 4(g) inclusive.5

The process of dividing the problem into smaller and smaller sub-
problems is done until the sub-problems are

• manageably small, and
• solvable separately, i.e. relatively independent of one another.

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

8

What is meant by abstraction?
The human brain is an exceptional piece of biological machinery capable of recognising
objects even when most of their detail has been removed.

This is illustrated in Figure 1.1.9 which is an abstraction of an image of a child.
The child depicted in the image is a real person and the image is a particular abstraction of
the real child.

Humans deal with abstractions all the time, because they are useful in everyday
problem solving.

For example, the solution to the problem of travelling from Marylebone to Russell
Square by London Underground involves
taking the Bakerloo line from Marylebone
as far as Piccadilly Circus then changing to
the Piccadilly line and travelling as far as
Russell Square.

The map of the London underground
shown in Figure 1.1.10 is a useful
abstraction. It is not the real thing but a
useful depiction (abstraction) of it.

What makes it useful is that it does not
include more details than needed to succeed
in using it to reach the desired destination.

In this instance, the benefit of this kind of
abstraction of the real world derives from the fact that unnecessary details have
been removed.

Ease of use is a very good reason to work with an abstraction rather than the real
thing.

What we end up with when unnecessary details are removed is an example of an
abstraction, in particular representational abstraction.

Complexity is removed to make a problem easier to handle and solve.

The representation of the London Underground in Harry Beck’s map design does not contain unnecessary detail
such as roads and buildings above the underground rail system. The layout of the stations is also adjusted to make
the map easy to use.

The London Underground map is said to be a model of the real underground system.

Models are used to understand the world by removing complexity and focussing on details relevant to the task
in hand.

Figure 1.1.10 London underground map
based on a design by Harry Beck

Figure 1.1.9 Silhouette
image of a child

Key principle
Abstraction:
Abstraction is a process in
which unnecessary details are
removed from a problem to
make the problem easier to
solve.

Institution licence - St Martins School Essex

1.1 Representing algorithms

9

Example

Suppose we wish to calculate the sum of the first n natural numbers.

We have two choices of methods for calculating this sum 1 + 2 + 3 + 4 + ... + (n - 1) + n and

Try both formulae for n = 6 and other values to convince yourself that the second formula produces the same result
as the first.

Now we have two ways of decomposing the problem, Method 1 and Method 2.

Table 1.1.3 shows the two methods expressed in the pseudo-code defined by AQA pseudo-code.

Figure 1.1.11 shows Method 1 in equivalent flowchart form.

Figure 1.1.12 shows Method 2 in equivalent flowchart form.

The fact that the pseudo-code used in Table 1.1.3 is slightly
different from the pseudo-code used earlier in this chapter emphasises the fact that pseudo-
code is an informal language, i.e. there are no hard and fast rules that must be obeyed.

This is not the case in a formal language, where in constructing statements with it the rules
must be obeyed. Break a rule and the statement will be rejected because it is invalid.

n x (n + 1)

2

Method 1 Method 2

n ← USERINPUT

Sum ← 0

Count ← 0

REPEAT

Count ← Count + 1

Sum ← Sum + Count

UNTIL Count = n

OUTPUT Sum

n ← USERINPUT

Sum ← (n * (n + 1)) / 2

OUTPUT Sum

Table 1.1.3 AQA Pseudo-code for Methods 1 and 2

Start

Stop

n ← USERINPUT

OUTPUT Sum

Sum ← (n*(n+1))/2

Figure 1.1.12
Method 2 flowchart

Start

Stop

Count ← Count + 1

n ← USERINPUT

Is
Count = n?

No

Yes

Sum ← Sum + Count

OUTPUT Sum

Sum ← 0

Count ← 0

Figure 1.1.11
Method 1 flowchart

Tasks
Download the Raptor flowchart SumFirstNMethod1.rap from
www.educational-computing.co.uk/GCSE/RaptorFlowchartPrograms/TasksCh1.1.html
Run this flowchart in single-step mode in Raptor for small values of n and observe how it works.

Download the Raptor flowchart SumFirstNMethod2.rap from
www.educational-computing.co.uk/GCSE/RaptorFlowchartPrograms/TasksCh1.1.html
Run this flowchart in single-step mode in Raptor for small values of n and observe how it works.

9

10

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

10

Process abstraction

When developing an algorithm that will be turned into a computer program for execution by computer, we write
the steps of the algorithm in terms of what a computer can do.

These algorithm steps tend to be rather simple ones because a computer has a limited number of instructions it can
execute, e.g. ADD, SUBTRACT, COMPARE, JUMP, etc.

This makes computer algorithms that do complex tasks long and intricate.

Hence computer algorithms can be
• hard to understand
• difficult to get correct
• tough to modify.

Is there a way to deal with this complexity?

There is, but only if the computer could be made "smarter" by performing complex operations in a single step.

To achieve this we must be able to abstract away the many simple steps of a specific task by hiding them behind a
single name!

This is done by grouping a set of statements that accomplish a specific task into a "routine" and giving the "routine"
a unique name. Then, whenever the specific task needs to be performed, the routine is called by name to execute
the task conceptually as a single step.

The CalculateSumTo routine in Figure 1.1.13 does many
individual steps to calculate the sum, but it is not necessary to know
the details (Note that this loop uses WHILE something true,
i.e. Count ≠ n).

These details can be abstracted away inside a routine (formally
a subroutine) and from thereon referred to by name only, i.e.
CalculateSumTo.

To use this routine we call it by name as shown in Figure 1.1.14.

All that need concern us now is that the routine does what
it is required to do, i.e. given a value for variable NatNum,
calculate the sum of the natural numbers up to and
including this value.
Figure 1.1.15 shows how subroutine CalculateSumTo is
called in Raptor. The sum is returned in Sum.

NatNum ← USERINPUT

Result ← CalculateSumTo(NatNum)

OUTPUT Result

Figure 1.1.14 Using CalculateSumTo
subroutine

Figure 1.1.15
Calling subroutine

CalculateSumTo in Raptor

SUBROUTINE CalculateSumTo(n)

Sum ← 0

Count ← 0

WHILE Count ≠ n

Count ← Count + 1

Sum ← Sum + Count

ENDWHILE

 RETURN Sum

ENDSUBROUTINE

Figure 1.1.13 Subroutine CalculateSumTo

NOT EQUAL TO
Raptor uses !=

Institution licence - St Martins School Essex

1.1 Representing algorithms

11

Figure 1.1.16 shows subroutine CalculateSumTo
flowchart in Raptor.

The power of abstraction in dealing with complexity
means that the steps to calculate the sum of the first n
natural numbers need writing just once.

Thereafter, all requirements to calculate this sum can be
satisfied by simply calling this routine.

Subroutines allow different values to be "passed" and
changed on each call to the subroutine.

These "passed" values are called parameters.
CalculateSumTo has such parameters.

In Raptor they are n and Sum as shown in Figure 1.1.16.
Parameter n can only be passed into the routine whilst
parameter Sum can only be passed out.

Parameters make it easier to change the behaviour of the
subroutine because each call to the subroutine can send
a different initial value or set of initial values if there is
more than one input parameter.

In Raptor, these values are passed in and out in NatNum
and Sum respectively as shown in Figure 1.1.15.

In Figure 1.1.14, a value is passed in NatNum and
CalculateSumTo(NatNum)evaluates to the calculated sum.

To make this clearer we will use a subroutine that is already available in Raptor to draw circles of different sizes.

The subroutine is Draw_Circle(x, y, radius, color, filled). The American spelling of color is used.

It has five parameters, x, y, radius, color, filled. Their purpose is described in Table 1.1.4.

The process of drawing a circle consist of many steps but this are hidden from the user.

This is called process abstraction.

Figure 1.1.16 Subroutine
CalculateSumTo in Raptor

x x coordinate of the centre of the circle
y y coordinate of the centre of the circle
radius radius of the circle
color colour to be used for the outline of the circle and if the next parameter, filled is TRUE, the fill

colour of the circle

filled If TRUE the circle is filled, if FALSE it is not.
Table 1.1.4 The purpose of the parameters of Draw_Circle

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

12

Figure 1.1.17 shows Draw_Circle used four times to
draw the filled concentric circles shown in Figure 1.1.18.

We will call this set of concentric circles drawing a bull's
eye.

We can then abstract to another level and create a
subroutine for drawing a bull's eye :

BullsEye(x, y)

Figure 1.1.19 shows a Raptor flowchart in which
BullsEye is called three times with different values for
the parameters x, y each time:

First time: Firstx, Firsty
Second time: Secondx, Secondy
Third time: Thirdx, Thirdy

Figure 1.1.20 shows the outcome. Figure 1.1.21 shows the subroutine BullsEye
Raptor flowchart.

Figure 1.1.17 Flowchart
describing the drawing of

four filled concentric circles

Figure 1.1.18 Outcome
of "executing" the

flowchart

Figure 1.1.19 Flowchart
showing subroutine

BullsEye called three times

Figure 1.1.20 Outcome of
calling BullsEye three time

Figure 1.1.21 BullsEye flowchart

Institution licence - St Martins School Essex

1.1 Representing algorithms

13

Tasks
Download the Raptor flowchart BullsEye.rap from
www.educational-computing.co.uk/GCSE/RaptorFlowchartPrograms/TasksCh1.1.html
Run this flowchart in single-step mode in Raptor and observe how it works.
Experiment with different x, y coordinate pairs, e.g. try x = 200, y = 200.

Download the Raptor flowchart BullsEyeSubroutine.rap from
www.educational-computing.co.uk/GCSE/RaptorFlowchartPrograms/TasksCh1.1.html

Run this flowchart in single-step mode in Raptor for small values of n and observe how it works.
Experiment with different coordinate pairs, e.g. try Firstx = 200, Firsty = 200.
How could you reduce the number of assignment boxes? Experiment.

11

12

Explaining simple algorithms in terms of their inputs, processing and outputs
Figure 1.1.22 shows

• a pseudo-code description of an algorithm for finding the largest integer amongst three given integers

• the inputs to this algorithm, x, y, z and the data type of the values that they store

• the output expected from the algorithm

The algorithm expresses the processing that should
be applied to the inputs to produce the output.

Up until now, it was convenient to include input
and output statements in our algorithms.

However, it is better to separate both input and
output from the processing that the algorithm does
as shown in Figure 1.1.22.

In Raptor, we use a main flowchart "program" (Figure
1.1.23) which

• gets user input

• calls subroutine FindLargest (Figure 1.1.24)

- FindLargest does the processing

- FindLargest returns in Largest the largest integer

• The "program" then outputs the value of Largest to
the user.

Here we have differentiated between user input and user
output and the algorithm's input and output - Figure
1.1.23. The latter appear as an out parameter of subroutine
FindLargest.

Figure 1.1.23
Calling flowchart

Figure 1.1.24
Called FindLargest

subroutine

Input: x, y, z are three variables. Each stores an integer

Output: Largest is the largest integer

Algorithm:

 Largest ← x

 IF Largest < y THEN

 Largest ← y

 ENDIF

 IF Largest < z THEN

 Largest ← z

 ENDIF

Figure 1.1.22 Input, Process, Output

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

14

Questions

Figure 1.1.25 shows the pseudo-code for a subroutine
FindLargest that returns the larger of two integers.
(a) How many parameters does the subroutine

FindLargest have?

(b) Subroutine FindLargest is called as follows
s ← USERINPUT
t ← USERINPUT

IF s ≠ t THEN
 Largest ← FindLargest(s,t)
 OUTPUT Largest
ELSE OUTPUT "Same"
ENDIF

In this pseudo-code ≠ means not equal to.
The pseudo-code is designed to output a single message about the size of the two integers the user enters.
Complete a copy of Table 1.1.5 by hand tracing this pseudo-code for the given user inputs.

Figure 1.1.26 shows pseudo-code which outputs
a single message on the divisibility of an integer
number entered by a user.
(a) Complete a copy of Table 1.1.6 by hand
tracing this pseudo-code for user input 7.

(b) Write a subroutine IsNumberEven which
takes an integer and returns TRUE if the integer
is divisible by two otherwise it returns FALSE.

(c) Write pseudo-code which uses IsNumberEven on user
input stored in variable n and which outputs one of two
possible messages

"Number is even"
 or

"Number is odd"

depending on what is returned from IsNumberEven.

2

SUBROUTINE FindLargest(x,y)
 IF x > y THEN
 RETURN x
 ELSE
 RETURN y
 ENDIF
ENDSUBROUTINE

Figure 1.1.25

s t s ≠ t x y x > y
Output
message

5 5
3 7
8 2

Table 1.1.5

n ← USERINPUT

REPEAT

 n ← n - 2

UNTIL n ≤ 0

IF n = 0 THEN

 OUTPUT "Number divisible by 2"

ELSE

 OUTPUT "Number not divisible by 2"

ENDIF
Figure 1.1.26

n n ≤ 0
Output
message

7

Table 1.1.6

1

LESS THAN OR EQUAL TO
Raptor uses <=

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

15

Determining the purpose of simple algorithms
The purpose of simple algorithms may be discerned by hand tracing the steps of the algorithm and noting the
values of any variables in a trace table.

Table 1.1.2 from earlier in the chapter is an example of a trace table.

Hand tracing is done by a human with pencil and paper and not by a computer.

A human reads each step in the algorithm starting from the beginning and simulates how the algorithm processes
its input to produce output.

From this information, the human should be able to work out what the algorithm does if not known already, e.g.
sorting a list of integers into ascending numerical order.

If the purpose of the algorithm is known then the purpose of hand tracing could be to check that the algorithm
produces the expected output, i.e. that it performs as expected.

Sometimes, it is just enough to visually inspect the algorithm to work out what it does or what it will output for
given inputs.

In this chapter you have covered:

 ■ The meaning of the term algorithm

 ■ The meaning of the term decomposition

 ■ The meaning of the term abstraction

 ■ Using a systematic approach to problem solving and algorithm creation representing those algorithms using
pseudo-code, program code and flowcharts

 ■ Explaining simple algorithms in terms of their inputs, processing and outputs

 ■ Determining the purpose of simple algorithms.

Questions

What is the purpose of the algorithm shown in pseudo-code in
Figure 1.1.27?

3

n ← USERINPUT

m ← USERINPUT

Count ← 0

p ← 1

IF m > 0 THEN

 REPEAT

 p = n * p

 Count ← Count + 1

 UNTIL Count = m

ENDIF

OUTPUT p

Figure 1.1.27

Institution licence - St Martins School Essex

16

 ■ 1.2 Efficiency of algorithms
More than one algorithm can be used to solve a problem
Two different algorithms for summing the first n natural numbers are shown in
Table 1.1.3 in Chapter 1.1. Chapter 1.3 focuses on two different algorithms,
linear search and binary search, for searching a list of items. Chapter 1.4
focuses on two different algorithms, bubble sort and merge sort, for sorting
(placing in order) a list of items.

Why is it important to have more than one algorithm to solve a problem?

Reason: The programmed equivalents of algorithms do not all take the same
time to execute or the same amount of space in memory.

One algorithm can take less time to complete a task or solve a problem than
another or can take less space in memory than another.

Usually, if an algorithm takes less time it will do so at the expense of taking
more space and vice versa.

Hence, computer scientists study and compare the efficiency of algorithms in
time and space.

Comparing the efficiency of algorithms
An algorithm consists of a sequence of steps, step 1, step 2, etcetera, which we
call computational steps.

An algorithm is turned into an equivalent computer program by replacing the
steps, step 1, step 2 , etc, with their equivalent in some programming language.

Each programming language step will consume a certain amount of computer
time when executed.

Suppose in some programming language each step takes on average StepTime
seconds to execute on a particular computer.

And suppose the program coded algorithm performs a total number of steps,
NoOfSteps, in completing the algorithm’s task then the total time, TotalTime,
for the execution of the program is given by

TotalTime = NoOfSteps x StepTime

Figure 1.2.1 shows a person in silhouette climbing a flight of stairs of some five
steps.

Figure 1.2.2 shows multiple flights of stairs.

Learning objectives:

 ■ Understand that more than
one algorithm can be used to
solve the same problem

 ■ Compare the efficiency of
algorithms explaining how
some algorithms are more
efficient than others in solving
the same problem.

1 Fundamentals of algorithms
1 Fundamentals of algorithms

STEP 2
STEP 1

STEP 3
STEP 4

STEP 5

Figure 1.2.1

Figure 1.2.2

Flight of stairs

Landing

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

17

Quite clearly, if the person in silhouette climbs to the very top in Figure 1.2.2
at the same uniform rate as they climb to the top in Figure 1.2.1 they will take
longer because of the fact that there are more steps in Figure 1.2.2.

More steps means more time consumed.

Figure 1.2.3 shows a more direct way of reaching the top which relies on
moving from floor to floor in one go.

If we consider each floor-to-floor movement as one step then this method to
the top will take fewer steps to accomplish its task and consequently less time
than climbing the stairs.

Figure 1.2.4 shows the output from a Python program running on an AMD®
FX-6300 six-core processor.

This program times the execution of two different sorting algorithms, merge
sort and bubble sort, respectively, applied to the same unsorted data set
consisting of 50000 randomly chosen integers.

Note that the program code for the first sorting algorithm, merge sort, takes
0.64 seconds to complete its task whilst the program code for the second,
bubble sort, takes 843 seconds or about 14 minutes to complete its task.

If a different computer had been chosen for this comparison exercise, the times
would more than likely have been different but their ratio would have been
very similar.

The reason for the difference in time taken is that the bubble sort algorithm
takes many more steps than the merge sort algorithm to sort the same
unordered list of integers.

This suggests that we can get a feel for how one algorithm compares time-wise
with another by just comparing their number of steps.

For some algorithms the number of steps will be highly influenced by the size
of the input. Size will be interpreted as the number of data items in the case of
sorting algorithms.

Figure 1.2.4 Output from a Python program running on an AMD FX-6300 six-core processor.
This program times the execution of two sorting algorithms merge sort and bubble sort on the same
unsorted data set consisting of 50000 randomly chosen integers.

Information

Merge sort and bubble sort
timing Python program may be
downloaded from
www.educational-computing.
co.uk/GCSE/Ch1.2/
MergeSortBubbleSortTiming.
py.
To run this program download
PyCharm Community edition
from
https://www.jetbrains.com/
pycharm/

Figure 1.2.3

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk/GCSE/Ch1.2/MergeSortBubbleSortTiming.py
http://www.educational-computing.co.uk/GCSE/Ch1.2/MergeSortBubbleSortTiming.py
http://www.educational-computing.co.uk/GCSE/Ch1.2/MergeSortBubbleSortTiming.py
http://www.educational-computing.co.uk/GCSE/Ch1.2/MergeSortBubbleSortTiming.py
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/

1.2 Efficiency of algorithms

18

Figure 1.2.5 shows the comparison of execution times when the “size” of the input in each case is a list of 200
integers.

In Figure 1.2.2 the landings between flights of stairs become less influential on the overall total number of steps
(e.g. by counting walking across a landing as the equivalent of one step of a flight of stairs) as the number of flights
of stairs increases.

The latter contributes much more than the former to the overall total.

This is also the case for algorithms.

Some types of steps dominate over other types simply because there are more of one type than another.

Table 1.2.1 shows in pseudo-code two algorithms, algorithm 1 and algorithm 2, for calculating the sum of the first
n natural numbers,

i.e. 1 + 2 + 3 + ... + (n-1) + n

The second algorithm involves the following 6 steps
whatever the value of n:

1. 2 assignment steps (←)

2. An input step (USERINPUT)

3. An output step (OUTPUT Sum)

4. An addition step (+)

5. A multiplication step (*)

6. A division step (/2)

The first algorithm involves a number of steps
which varies with n as follows

1. 3 assignment steps (←)

2. An input step (USERINPUT)

3. An output step (OUTPUT)

4. A comparison step (Count < n)

5. 2 assignment steps (←) repeated n times (WHILE loop)

6. 2 addition steps (+) repeated n times (WHILE loop)

Setting aside whether or not each of the different type of steps (assignment, addition, etc) are “worth” different
amounts of time, algorithm 1 takes more steps than algorithm 2 to do the same task.

Algorithm 1 Algorithm 2

n ← USERINPUT

Sum ← 0

Count ← 0

WHILE Count < n

 Count ← Count + 1

 Sum ← Sum + Count

ENDWHILE

OUTPUT Sum

n ← USERINPUT

Sum ← (n * (n + 1))/2

OUTPUT Sum

Table 1.2.1 AQA Pseudo-code for Methods 1 and 2

Figure 1.2.5 Output from a Python program running on an AMD FX-6300 six-core processor.
This program times the execution of two sorting algorithms merge sort and bubble sort on the same
unsorted data set consisting of 200 randomly chosen integers.

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

19

Figure 1.2.6 shows the output
from a python program running
on an AMD FX-6300 six-core
processor. This program times
the execution of algorithms 1 and
2 for n = 10000000, 20000000,
30000000, 40000000 and
50000000.

Note that algorithm 1 (While
loop) takes more and more time
as n increases while algorithm 2
(formula) takes approximately the
same time, 2.3 microseconds.

Algorithm 1 takes about 3.4 seconds to sum the first
10000000 natural numbers and 17 seconds to sum the first
50000000!

Comparing algorithm 1 with algorithm 2 by estimating and
measuring how much time each takes to complete the same task is
called comparing their time efficiencies.

In particular, comparing different algorithms by counting the
number of steps each takes is known as comparing by time efficiency.

The comparisons are theoretical when they are done by hand and not by running the algorithms on a computer.

To “run” an algorithm we must turn it into a computer program and run the program on a computer. We can then
take time measurements using a timer internal to the computer. However, we need to be careful when making
comparisons because some computers are slower at executing programs than others.

Key point

Time efficiency of an
algorithm:
The time efficiency of an
algorithm is a theoretical
time measured by hand in
computational steps arrived
at by counting the number of
steps the algorithm makes to
complete a task.
More steps means the algorithm
will take longer than another
algorithm requiring fewer steps
to complete the same task.

Figure 1.2.6 Output from a Python program running on an AMD FX-6300
six-core processor. This program times the execution of algorithms 1 and 2 for
n = 10 00 0000, 20 000 000, 30 000 000, 40 000 000 and 50 000 000.

Question

What is meant by the time efficiency of an algorithm?

Why do computer scientists study and compare the time efficiency of
algorithms?

Is the following statement about comparing two different algorithms
for solving the same problem generally true?
“The one with the fewest number of lines of pseudo-code will take the least
amount of time to solve the problem when the programmed equivalents of
both are executed by computer, using the same programming language, the
same input and the same computer for both.”

1

2

3

Information

Sum of the first n natural numbers by both
algorithms timing Python program may be
downloaded from
www.educational-computing.co.uk/GCSE/
Ch1.2/SumToNByLoopingAndByFormula.py.

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk/GCSE/Ch1.2/SumToNByLoopingAndByFormula.py
http://www.educational-computing.co.uk/GCSE/Ch1.2/SumToNByLoopingAndByFormula.py

1.2 Efficiency of algorithms

20

In this chapter you have covered:

 ■ That more than one algorithm can be used to solve the same
problem

 ■ Comparing the efficiency of algorithms and how some
algorithms are more efficient than others in solving the same
problem.

Question

Table 1.2.2 shows pseudo-code for
two different algorithms each of
which calculates the sum of the first m
natural numbers where m is n, 2n, 3n,
4n, 5n, in turn. Table 1.2.3 shows an
example for n = 5.
Table 1.2.4 shows the time in seconds
taken by a programmed version of
algorithm 1 for n = 1000000.
Table 1.2.5 shows the time in seconds
taken by a programmed version of
algorithm 2 for n = 1000000.
The same programming language and
the same computer are used in each
case.
(a) Which algorithm is more time

efficient?
(b) How does this algorithm achieve

its better time efficiency?

4 Algorithm 1 Algorithm 2

n ← USERINPUT

FOR i ← 1 TO 5

 Sum ← 0

 Count ← 0

 WHILE Count < i * n

 Count ← Count + 1

 Sum ← Sum + Count

 ENDWHILE

 OUTPUT Sum

ENDFOR

n ← USERINPUT

PreviousSum ← 0

FOR i ← 1 TO 5

 Sum ← PreviousSum

 Count ← (i - 1) * n

 WHILE Count < i * n

 Count ← Count + 1

 Sum ← Sum + Count

 ENDWHILE

 OUTPUT Sum

 PreviousSum ← Sum

ENDFOR

Table 1.2.2

n m Sum

5

5 15

10 55

15 120

20 210

25 325

Table 1.2.3

m Time/s

1000000 0.44

2000000 0.85

3000000 1.28

4000000 1.70

5000000 2.12

Table 1.2.4

m Time/s

1000000 0.45

2000000 0.42

3000000 0.43

4000000 0.42

5000000 0.43

Table 1.2.5

Information

Comparing time efficiency Python program for
question 4 may be downloaded from
www.educational-computing.co.uk/GCSE/Ch1.2/
MoreEfficientSumToNByLooping.py.

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk/GCSE/Ch1.2/MoreEfficientSumToNByLooping.py
http://www.educational-computing.co.uk/GCSE/Ch1.2/MoreEfficientSumToNByLooping.py

21

 ■ 1.3 Searching algorithms
Linear search
Imagine a pile of animal name playing cards placed face down on a table in no
particular order. The playing cards are labelled ant, bee, cat, dog, and fox and the
pile is arranged as shown in Figure 1.3.1.

Searching for a particular card, say “cat”, by turning over the cards in turn,
starting from the card on top, is called a linear search. The red arrow in Figure
1.3.1 indicates the cards that have to be examined before the card labelled "cat"
is found.

Learning objectives:

 ■ Understand and explain how
 the linear search algorithm
 works

 ■ Understand and explain how
 the binary search algorithm
 works

 ■ Compare and contrast linear
 and binary search algorithms.

1 Fundamentals of algorithms
1 Fundamentals of algorithms

Figure 1.3.1 Linear search for the card labelled “cat”

fox
dog
ant
cat
bee

fox
dog
ant
cat
bee

fox
dog
ant
cat
bee

fox
dog
ant
cat
bee

Key point

Linear search:
Linear search scans each item or
element in a collection of items,
e.g. playing cards, in turn,
starting from the beginning,
until a match is found or the
end of the collection is reached.

Linear search doesn’t care
whether the list is ordered or
not.

Questions
A pack of cards is shuffled to ensure that the cards are in no particular
order and then placed face down on a table. Starting from the top of
the pack, one playing card is turned over at a time until the Ace of
Spades is found.

(a) If the task was repeated many times, shuffling the pack of 52 cards
before each new search, on average how many cards would need to be
turned over to find the Ace of Spades?

(b) What is the maximum number of cards that need turning over to
find a match?

Approximately half of the pack is removed. Starting from the top of
the pack, one playing card is turned over at a time until either the Ace
of Spades is found or all the cards have been examined.
What is the maximum number of cards that need turning over to find
the Ace of Spades or to discover that the half-pack doesn’t contain the
Ace of Spades?

What is the maximum number of cards that have to be turned over in
the pile of cards in Figure 1.3.1 to discover that “rat” is not amongst
them?

1

2

3

Information

Linear search is often
performed on lists of things,
e.g. names

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

22

Algorithm for linear search

Labelling the pile of animal name playing cards with the name, Vector,
enables us to refer to the card on top as the card in location Vector[1], the
card below this card as the card in location in Vector[2],
and the jth card as the card in location in Vector[j].

Labelling the card that we are searching for,
ElementSought, means that we can change this card to a
different one and continue to refer to the card to search for
by the label ElementSought. The number of elements,
NoOfElementsInVector, is 5 in our example. The
algorithm below performs a linear search on Vector assigning to Result the
position in Vector of the element if found otherwise assigning it the value 0.

Key concept

Search length:
Search Length = no of elements
of the vector which are
examined before a match is
found

Key fact

Average search length:
Average search length
≈ NoOfElementsInVector

2

≈ means approximately

Linear Search Algorithm

j ← 0

Found ← False

REPEAT

 j ← j + 1

 IF Vector[j] = ElementSought THEN

 Found ← True

 ENDIF

UNTIL Found Or j = NoOfElementsInVector

IF Found THEN

 Result ← j

ELSE

 Result ← 0

ENDIF

1 fox
2 dog
3 ant
4 cat
5 bee

Vector

Question

What is meant by linear search? 4

Task

Code the linear search algorithm in a programming language with
which you are familiar. Vector can be implemented as a one-
dimensional array of animal name strings or its equivalent. The animal
name to search for should be entered at the keyboard and assigned to
ElementSought. Your program should display the value assigned to
Result.

1

Information
In assessment material, AQA
will use array indexing which
starts from 0 unless specifically
stated otherwise.
To test your understanding of
the material in this chapter, it
would be beneficial to work
through the material again using
for each array indexing that
starts from 0.

Institution licence - St Martins School Essex

1.3 Searching algorithms

23

Binary search
If the elements have been ordered then a much shorter average search length
can be achieved as follows:

Assuming elements in a list are stored in ascending order as shown in Figure
1.3.2, a search for an element with a particular value, e.g."dog", resembles the
way a telephone directory might be searched.

The approximate middle of the list is located (location labelled 5 in Figure
1.3.2) and its value examined.

If this value is too high (e.g. alphabetically) then the approximate position of
the middle element of the first half is calculated and its value examined.

If the value is too low then the approximate position of the middle element of
the second half is calculated and its value examined.

This process continues until the desired element is found or the search interval
becomes empty.

Figures 1.3.2 and 1.3.3 show an example of binary search on an ordered list of
three-letter words. The elements in the list have been numbered, 1, 2, 3, ... 7,
8, 9, for convenience. The list is searched for the word "pig" which is located at
position 8 in the list.

The middle element, "dog" is selected first and compared with "pig". It doesn’t
match.

As "pig" is alphabetically greater than "dog",
the second half of the list "boy" to "red" is
chosen to search next. This second half runs
from "man" to "red".

Its middle lies between the word "pen" and
the word "pig". We have to choose one or
the other so the word that comes first, "pen",
is chosen. It doesn’t match the word "pig".
As "pig" is alphabetically greater than "pen",
the second half of the list "man" to "red" is
chosen for the next search. This second half runs from "pig" to "red".

1 boy
2 car
3 cat
4 day
5 dog
6 man
7 pen
8 pig
9 red

Figure 1.3.2 Performing a binary search for the word “pig”
on an ordered list of words

1 boy
2 car
3 cat
4 day
5 dog
6 man
7 pen
8 pig
9 red

1 boy
2 car
3 cat
4 day
5 dog
6 man
7 pen
8 pig
9 red

Key point

Search interval:
The range over which the search
is conducted, e.g. from list
elements 1 to 9 inclusive.

Key principle

Binary search:
Searching for "pig" in the list
in Figure 1.3.2 with elements
labelled 1 to 9, the position of
the middle element is calculated
as follows

middle position = (1 + 9) div 2
 = 10 div 2 = 5

middle position = (6 + 9) div 2
 = 15 div 2 = 7

middle position = (8 + 9) div 2
 = 17 div 2 = 8
Generalising,

middle position =
 (low + high) div 2

where low is position no of
lowest item and high, position
no of highest item in list, e.g.

low = 8, item = pig
high = 9, item = red

1 boy
2 car
3 cat
4 day
5 dog
6 man
7 pen
8 pig
9 red
Figure 1.3.3 Performing a binary search for the word “pig”

on an ordered list of words

1 boy
2 car
3 cat
4 day

6 man
7 pen
8 pig
9 red

6 man

8 pig
9 red

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

24

Binary Search Algorithm

 Result ← -1

 WHILE (Low <= High) And (Result = -1)

 Middle ← (Low + High) Div 2 {Find middle of list}

 IF ElementSought = Vector[Middle] THEN

 Result ← Middle {Found}

 ELSE

 IF ElementSought < Vector[Middle] THEN

 High ← Middle - 1 {search lower half}

 ELSE

 IF ElementSought > Vector[Middle] THEN

 Low ← Middle + 1 {search upper half}

 ENDIF

 ENDIF

 ENDIF

 ENDWHILE

Its middle lies between the word "pig" and the word “red". We have to choose
one or the other so the word that comes first, "pig", is chosen . It matches. So
"pig" is present in the list and is located at position 8 in this list.

Algorithm for binary search

Labelling the list to be binary searched as Vector, enables us to refer to the
first element by its location Vector[1], the next element by its location
Vector[2], and the jth element by its location Vector[j]. The range of the
vector to be searched is stored in Low and High. For example, Low = 1,
High = 9 means that the beginning of the range is location Vector[1] and
the end of the range is Vector[9].

Labelling the element that we are searching for, ElementSought, means that
we can change the value to a different one and continue to refer to the element
to search for by the label ElementSought. The algorithm below performs a
binary search on Vector assigning to Result the position in Vector of the
element if found otherwise assigning it the value -1.

Question

What is meant by binary search? 5

Key principle

Binary search:
Binary search uses a “divide and
conquer” approach to searching
a list by chopping the list into
smaller and smaller lists to
search until item found or list
cannot be divided anymore.

Institution licence - St Martins School Essex

1.3 Searching algorithms

25

1 ale
2 ant
3 ark
4 bat
5 boy
6 car
7 cat
8 day
9 dog

10 fox
11 jar
12 jug
13 man
14 pen
15 pig
16 red

Figure 1.3.4 Performing a binary search for the word “red”on an ordered list of words

1 ale
2 ant
3 ark
4 bat
5 boy
6 car
7 cat
8 day
9 dog

10 fox
11 jar
12 jug
13 man
14 pen
15 pig
16 red

1 ale
2 ant
3 ark
4 bat
5 boy
6 car
7 cat
8 day
9 dog
10 fox
11 jar
12 jug
13 man
14 pen
15 pig
16 red

1 ale
2 ant
3 ark
4 bat
5 boy
6 car
7 cat
8 day
9 dog

10 fox
11 jar
12 jug
13 man
14 pen
15 pig
16 red

1 ale
2 ant
3 ark
4 bat
5 boy
6 car
7 cat
8 day
9 dog

10 fox
11 jar
12 jug
13 man
14 pen
15 pig
16 red

Task

How many elements of the list in Figure 1.3.4 have to be examined when binary searching for the
element "red"?

How many elements have to be examined when binary searching for
(a) the element "day" in a list constructed from elements 1 to 8 of Figure 1.3.4?

(b) the element "bat" in a list constructed from elements 1 to 4 of Figure 1.3.4?

(c) the element "ant" in a list constructed from elements 1 to 2 of Figure 1.3.4?

3

4

Task

Using the list shown in Figure 1.3.4, hand trace the binary search algorithm given above for the value
"red". Complete a copy of the table shown below.

2

Low High Middle
1 16

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

26

Comparing linear and binary search algorithms
Table 1.3.1 summarises the outcomes of completing tasks 3 and 4. From Table

1.3.1 we conclude that for binary search the maximum
search length increases linearly when the number of
elements or items in a list doubles. For example, if the
number of items in the list is 8 (23), the maximum search
length is 3 + 1, i.e. 4 items have to be examined at most to
find a match or conclude that the sought item is not in the
list.

If we have, say, 16777216 (224) in a list, the maximum
search length is 24 + 1, i.e. 25 items have to be examined
at most to find a match or conclude that the sought item is
not in the list.

If we contrast this with linear search, then searching a list of
8 items requires 8 items to be examined if the sought item
is the last item, i.e. maximum search length for this linear
search = 8.

Similarly, searching a list of 16777216 items requires
16777216 items to be examined if the sought item is the
last item, i.e. maximum search length for this linear search =
16777216.

Table 1.3.2 compares binary search with linear search for
different lengths of list. This table shows clearly that binary
search is more efficient than linear search, timewise. Each
element or item of a list that has to be examined costs time.
If, for argument’s sake, it takes one microsecond to examine
an item, then for a list of 16777216 items, binary search will

take a maximum of 25 microseconds whilst linear search will take 16777216
microseconds or approximately 17 seconds.

We may draw a similar conclusion for the average search length.

Binary search can only be performed on ordered lists whereas linear search
can be performed on both ordered and unordered lists. Sorting a list into
order will take time but once ordered, binary search will perform searches
on the list faster than linear search will on the unordered list with the speed
advantage increasing with the size of the list.

Key fact

Binary search versus linear
search:
Binary search is more efficient
timewise than linear search.

Key fact

Binary search versus linear
search:
Binary search can only be
performed on ordered lists,
linear search can be performed
on both ordered and unordered
lists.

No of items
in list

Maximum
search length
binary search

Maximum
search length
linear search

1 1 1
2 2 2
4 3 4
8 4 8
16 5 16

32768 16 32768
65536 17 65536

16777216 25 16777216

Table 1.3.2 Comparing maximum search length for
binary and linear searches

No of items
in list

No of items
in list as a
power of 2

Maximum
search length

1 20 1
2 21 2
4 22 3
8 23 4
16 24 5

Table 1.3.1 Relationship between maximum search
length and no of items in list for binary search

Institution licence - St Martins School Essex

1.3 Searching algorithms

27

In this chapter you have covered:

 ■ linear search algorithm scans a list from the beginning until a match is
 found or the end of the list is reached.

 ■ binary search algorithm uses a “divide and conquer” approach to
 searching a list by chopping the list into smaller and smaller lists to search
 until item found or list cannot be divided anymore.

 ■ binary search is more efficient than linear search, timewise, because it
 examines fewer elements of a list

 ■ binary search can only be performed on ordered lists

 ■ linear search can be performed on both ordered and unordered lists

Questions

State two requirements that a list must satisfy for an item to be found using binary search.

Explain why binary search is more efficient than linear search, timewise.

State whether it is possible to search an unordered list using
(a) binary search
(b) linear search.

6

7

8

Institution licence - St Martins School Essex

28

 ■ 1.4 Sorting algorithms
Sorting
In computer science sorting means arranging items into ascending or
descending order, e.g. the following unsorted list of letters of the alphabet is
sorted into ascending order when letter A is first, letter B second, and so on.

Unsorted list: C F A E D B

Sorted list (ascending): A B C D E F

The following unsorted list of letters of the alphabet are sorted into descending
order when the letter F is first, the letter E second, and so on.

Unsorted list: C F A E D B

Sorted list (descending): F E D C B A

Bubble sort algorithm
Bubble sort is a simple sorting algorithm but not a very efficient one, stepwise.

It belongs to a family of sorting algorithms called “exchange” or “transposition”
sorts.

In an exchange sort, pairs of items that are out of order are interchanged
until no more of these pairs exist.

Figure 1.4.1 shows the “lighter” items bubbling up the list when out of order
pairs are interchanged whilst the “heaviest” sinks to the bottom.

Clearly, more than one pass through the list is required before the items are
sorted in ascending order with the lightest at the top and the heaviest at the
bottom.

The pairs that are compared on the first pass through the list in bubble sort
C F A E D B are as follows:

C & F - no exchange; F & A - exchange; F & E - exchange;

F & D - exchange; B & F - exchange.

The first pass is shown in Figure 1.4.2.

The comparisons are pink squares (█), the exchanges are red letters and no-
exchanges are green letters.

As the list is not sorted by the end of the first pass, another pass is needed but
we don’t need to compare the last two items because the “heaviest”, F, has sunk
to the bottom.

The list to be sorted is now C A E D B F.

Learning objectives:

 ■ Understand and explain how
the merge sort algorithm works

 ■ Understand and explain how
the bubble sort algorithm
works

 ■ Compare and contrast
merge sort and bubble sort
algorithms.

1 Fundamentals of algorithms
1 Fundamentals of algorithms

C C

F A

A E

E D

D B

B F

Figure 1.4.1 First pass

C C C C C C

F F A A A A

A A F E E E

E E E F D D

D D D D F B

B B B B B F

Figure 1.4.2 First pass
showing comparisons
and exchanges

Task
Download python program from
www.educational-computing.
co.uk/GCSE/Ch1.4/
MergesortBubbleSortTiming.py
and run.

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk/GCSE/Ch1.4/MergesortBubbleSortTiming.py
http://www.educational-computing.co.uk/GCSE/Ch1.4/MergesortBubbleSortTiming.py
http://www.educational-computing.co.uk/GCSE/Ch1.4/MergesortBubbleSortTiming.py

1 Fundamentals of algorithms

29

C A A A A

A C C C C

E E E D D

D D D E B

B B B B E

F F F F F

Figure 1.4.3 Second pass

A A A A

C C C C

D D D B

B B B D

E E E E

F F F F

Figure 1.4.4 Third pass

A A A

C C B

B B C

D D D

E E E

F F F

Figure 1.4.5 Fourth pass

A A

B B

C C

D D

E E

F F

Figure 1.4.6 Fifth pass

C F A E D B

C A E D B

A C D B

A C B

A B

List on 1st pass

List on 2nd pass

List on 3rd pass

List on 4th pass

List on 5th pass

Figure 1.4.7 Items that
remain to be compared on
each pass

The pairs that are compared on the second pass through the list are as follows:

C & A - exchange; C & E - no exchange; E & D - exchange;

E & B - exchange.

The second pass is shown in Figure 1.4.3.

As the list is not sorted by the end of the second pass, another pass is needed but
we don’t need to compare the last three items because the “heaviest”, F, and the
next “heaviest”, E, have sunk to the bottom.

The list to be sorted is now A C D B E F.

The pairs that are compared on the third pass through the list are as follows:

A & C - no exchange; C & D - no exchange; D & B - exchange.

The third pass is shown in Figure 1.4.4.

As the list is not sorted by the end of the third pass, another pass is needed but
we don’t need to compare the last four items because the “heaviest”, F, the next
“heaviest”, E, and the next D have sunk to the bottom.

The list to be sorted is now A C B D E F.

The pairs that are compared on the fourth pass through the list are as follows:

A & C - no exchange; C & B - exchange.

The fourth pass is shown in Figure 1.4.5.

The list is now A B C D E F. It is sorted in ascending alphabetical order.

Unfortunately, the bubble sort algorithm makes one more pass.

The pairs that are compared on the fifth pass through the list are as follows:

A & B - no exchange.

The fifth pass is shown in Figure 1.4.6.

The items considered in each pass are shown in Figure 1.4.7.

The number of passes is one less than the number of items to be sorted.

Number of passes = NoOfItems - 1

Institution licence - St Martins School Essex

1.4 Sorting algorithms

30

On the first pass, the number of comparisons is one less than the number of
items to be sorted, i.e. 5 when number of items is 6. On the next pass, 4, then
on the next 3, the next 2 and the last 1 as shown in Figure 1.4.8.

Figure 1.4.9 shows the letters C, F, A, E, D, B stored in a structure consisting of six labelled storage cells.

The cells are labelled 0, 1, 2, 3, 4, 5, 6.

The cell labelling provides an index for selecting a particular cell of this structure just as the page number of a book
is used to select a particular page.

Let the structure be referred to collectively by the name ArrayOfItems.

To address the contents of the cell labelled 0 we use the collective name for the whole structure and refer to the
specific cell as follows

ArrayOfItems[0]

The contents of the next cell

ArrayOfItems[1]

and so on
ArrayOfItems[2]

ArrayOfItems[3]

ArrayOfItems[4]

ArrayOfItems[5]

C F A E D B

C A E D B

A C D B

A C B

A B

List on 1st pass

List on 2nd pass

List on 3rd pass

List on 4th pass

List on 5th pass

Figure 1.4.8 Comparisons on each pass

5 comparisons

4 comparisons

3 comparisons

2 comparisons

1 comparison

C 0

F 1

A 2

E 3

D 4

B 5

Figure 1.4.9 Structure called ArrayOfItems

The following For loop generates values for
PassNo of 5, then 4, 3, 2, 1
FOR PassNo ← 1 TO (NoOfItems - 1)

Task
Watch video of the bubble sort
algorithm at

https://www.youtube.com/
watch?v=JP5KkzdUEYI

Institution licence - St Martins School Essex

https://www.youtube.com/watch?v=JP5KkzdUEYI
https://www.youtube.com/watch?v=JP5KkzdUEYI

1 Fundamentals of algorithms

31

To compare the letter in cell 0 with that in cell 1 we can use

IF ArrayOfItems[0] > ArrayOfItems[1]

To compare a pair of adjacent items at position j and j+1 in ArrayOfItems (Figure 1.4.9)
we can use

IF ArrayOfItems[j] > ArrayOfItems[j+1]

For example, if j=0 then j+1=1 and the example from the previous page:

IF ArrayOfItems[0] > ArrayOfItems[1] evaluates to False.

But if we set j=1 then j+1=2 and the following evaluates to True:

IF ArrayOfItems[1] > ArrayOfItems[2]

To swap or exchange a pair of items at position j and j+1 we can use the following

Temp ← ArrayOfItems[j]

ArrayOfItems[j] ← ArrayOfItems[j+1]

ArrayOfItems[j + 1] ← Temp

Table 1.4.1 shows the values of Temp,
ArrayOfItems[j] and ArrayOfItems[j+1]
for j = 1 during the swap.

To make 5 comparisions, then 4, 3, 2 and 1 we can use a
For loop as follows

FOR j ← 0 TO (NoOfItems - (PassNo + 1))

Where PassNo is 1, then 2, 3, 4 and 5, j is 0 To 4, then
0 To 3, 0 To 2, 0 To 1 and finally 0 To 0 as shown in
Table 1.4.2.

The bubble sort algorithm is given in Figure 1.4.10.

It consists of an outer loop
FOR PassNo ← 1 TO (NoOfItems - 1) … ENDFOR

which controls an inner loop which is executed once for each value of PassNo

FOR j ← 0 TO (NoOfItems - (PassNo + 1)) … ENDFOR

FOR PassNo ← 1 TO (NoOfItems - 1)
 FOR j ← 0 TO (NoOfItems - (PassNo + 1))
 IF ArrayOfItems[j] > ArrayOfItems[j + 1] THEN
 Temp ← ArrayOfItems[j]
 ArrayOfItems[j] ← ArrayOfItems[j + 1]
 ArrayOfItems[j + 1] ← Temp
 ENDIF
 ENDFOR
ENDFOR

Figure 1.4.10 Bubble sort algorithm

j Temp ArrayOfItems[j] ArrayOfItems[j+1]

1 F F A

1 F A A

1 F A F

Table 1.4.1 Trace table

PassNo FOR j ← 0 TO NoOfItems-(PassNo+1)

1 FOR j ← 0 TO 4

2 FOR j ← 0 TO 3

3 FOR j ← 0 TO 2

4 FOR j ← 0 TO 1

5 FOR j ← 0 TO 0

Table 1.4.2

Information
Bubble sort is very inefficient. For
example, if bubble sort is required
to sort an ordered list of items
into ascending order and the list is
already in ascending order, it fails
to notice this. Instead it ploughs
on merrily through the outer and
inner loops making unnecessary
comparisons. Adding a flag
NoExchanges can be used to
stop the iterations.
NoExchanges is set to True
at the beginning of each pass
and to False inside the inner
loop if an exchange occurs. If
NoExchanges is still True at the
end of a pass, the list is ordered and
the loop can be exited prematurely.

Institution licence - St Martins School Essex

1.4 Sorting algorithms

32

Figure 1.4.11 shows how j varies on
each pass.

Figure 1.4.12 shows this sequence for
each pass.

 j → 0 1 2 3 4

0 C C C C C C

1 F F A A A A

2 A A F E E E

3 E E E F D D

4 D D D D F B

5 B B B B B F

Pass = 1
 j → 0 1 2 3

0 C A A A A

1 A C C C C

2 E E E D D

3 D D D E B

4 B B B B E

5 F F F F F

Pass = 2
 j → 0 1

0 A A A

1 C C B

2 B B C

3 D D D

4 E E E

5 F F F

Pass = 4
 j → 0

0 A A

1 B B

2 C C

3 D D

4 E E

5 F F

Pass = 5
 j → 0 1 2

0 A A A A

1 C C C C

2 D D D B

3 B B B D

4 E E E E

5 F F F F

Pass = 3

Figure 1.4.12 The range of values of loop counter j on each pass

 PassNo → 1 2 3 4 5

0 0 0 0 0

1 1 1 1

2 2 2

3 3

4

NoOfItems - 1

j

Figure 1.4.11

Question
The following list of letters of the alphabet is to be sorted by bubble sort into ascending order with A first
followed by B, and so on,

F E D C B A

Hand trace sorting this list into ascending order by completing a copy of the trace tables shown in Figure
1.4.13. The first pass has been done for you. The list of numbers to the left of each table is the index of
ArrayOfItems.

1

0 F E E D D D

1 E F D E E E

2 D D F C C C

3 C C C F B B

4 B B B B F A

5 A A A A A F

Pass = 1

0

1

2

3

4

5

Pass = 4

0

1

2

3

4

5

Pass = 5

0

1

2

3

4

5

Pass = 3

Figure 1.4.13 State of ArrayOfItems, during trace of bubble sort algorithm

0

1

2

3

4

5

Pass = 2

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

33

Merge sort algorithm
Merge sort is an example of a divide and conquer algorithm, meaning that the problem of sorting an unsorted list
of items is solved by dividing the problem into subproblems, solving the subproblems, and then merging the results
to produce the sorted list.

• The divide and conquer approach divides the work into roughly equal parts.

• These equal parts are subdivided into roughly equal sub parts, and then each of these are divided equally,
and so on until the work can be divided no further or until the problem is trivial to solve.

For example, suppose the task is to sort the following unsorted list of letters of the alphabet into ascending
alphabetical order (A first, B second, and so on): Unsorted list: G C H F A E D B

We first divide the list into eight single-letter lists as shown in Figure 1.4.14.

The final stage is a collection of single-letter sub lists.

Each single-letter sub list is by definition a sorted list of one.

We divide (split in two) the list into
two separate sub lists with each
containing half the letters:

1. Unsorted sub list: G C H F

2. Unsorted sub list: A E D B

We then divide each sub list as follows

1. Unsorted sub list: G C H F
1.1 Unsorted sub list: G C

1.2 Unsorted sub list: H F
2. Unsorted sub list: A E D B

2.1 Unsorted sub list: A E
2.2 Unsorted sub list: D B

And again

1.1 Unsorted sub list: G C

1.1.1 Sorted sub list: G
1.1.2 Sorted sub list: C

1.2 Unsorted sub list: H F

1.2.1 Sorted sub list: H
1.2.2 Sorted sub list: F

2.1 Unsorted sub list: A E
2.1.1 Sorted sub list: A
2.1.2 Sorted sub list: E

2.2 Unsorted sub list: D B

2.2.1 Sorted sub list: D
2.2.2 Sorted sub list: B

G C H F A E D B

Split

Split

Split

G C H F

H FG C

G C H F A E D B

D BA E

A E D B

Figure 1.4.14 The divide phase of merge sort

Divide phase of merge sort

Institution licence - St Martins School Essex

1.4 Sorting algorithms

34

We now begin the next phase, the merge phase, the first stage of which merges the collection of eight single-letter
sub lists into a collection of sorted two-letter sub lists as shown in Figure 1.4.15.

The next stage merges the collection of two-letter sub lists into a collection of sorted four-letter sub lists as shown in
Figure 1.4.15.

The final merge occurs with the two sorted sub lists C F G H and A B D E as shown in Figure 1.4.15 to produce the
sorted list of letters A B C D E F G H.

Figure 1.4.16 shows the three merge stages for a set of cards labelled A, B, C, D, E, F, G, H respectively.

• The upper level of stage 1 is the collection of single-letter sorted lists.

• The lower level is the collection of two-letter sorted lists that results from moving the upper level to the
lower level. The lower level is then moved to the upper level to produce the collection of four-letter sorted
lists.

• Finally the upper level is moved to the lower level to produce the final sorted list.

Merge phase of merge sort

Merge

Merge

Merge

A B C D E F G H

C F G H

F HC G

G C H F A E D B

B DA E

A B D E

Figure 1.4.15 The merge phase of merge sort

Stage 3

BDEAFCG H
DBEAHGC F

EDBAHFC G
DBEAHGC F

EDBAHFC G HGFED
BA

C

Figure 1.4.16 The three
merge stages 1, 2 and 3

Stage 2

Stage 1 Task
Watch video of the merge sort algorithm at
www.youtube.com/watch?v=EeQ8pwjQxTM

Task
Download python program
from
www.educational-computing.
co.uk/GCSE/Ch1.4/
MergeSort.py and run.

Institution licence - St Martins School Essex

http://www.youtube.com/watch?v=EeQ8pwjQxTM
http://www.educational-computing.co.uk/GCSE/Ch1.4/MergeSort.py
http://www.educational-computing.co.uk/GCSE/Ch1.4/MergeSort.py
http://www.educational-computing.co.uk/GCSE/Ch1.4/MergeSort.py

1 Fundamentals of algorithms

35

Comparing and contrasting merge sort and bubble sort algorithms

Merge sort can sort large volumes of data resident on magnetic disk

Merge sort is well-suited to sorting really huge amounts of data that do not fit into main memory.

Figure 1.4.21 shows a magnetic disk file, file A, containing a few integers in no particular order (although
technically it could be many integers), and two other magnetic disk files, file B and file C, which have received the
results of splitting the contents of file A as shown.

Only two integers at a time have to be read from file A into main memory.

The two integers are compared and then written out to disk file B or file C.

File A must then be emptied in preparation for
receiving the partially ordered result of merging, in
ascending numerical order, the contents of file B
with the contents of file C.
The process is repeated until the contents of file A
are sorted in ascending numerical order.

The use of magnetic disk files means that this
particular form of merge sort is not limited by the capacity of main memory.

Question
The merge sort division of the following list of
integers 8 5 7 1 9 4 2 3 into eight single-number
lists is shown on the upper step in Figure 1.4.17
and in the upper set of boxes in Figure 1.4.18.

This divided list 8 5 7 1 9 4 2 3 is to be merged
into ascending order.

(a) Copy Figure 1.4.18 and fill the blank boxes
with the collection of two-number sorted lists
that results from the first merge stage of merge
sort.

(b) Copy Figure 1.4.19 and fill the lower blank
boxes with your answer to part (a).
Fill the upper blank boxes with the collection
of four-number sorted lists that results from
the second merge stage of merge sort.

(c) Copy Figure 1.4.20 and fill the upper blank
boxes with your answer to part (b).
Fill the lower blank boxes with the final sorted
lists that results from the third merge stage of
merge sort.

2

Figure 1.4.18

8 5 7 1 9 4 2 3Upper

Lower

Upper

Lower
Figure 1.4.19

Upper

Lower
Figure 1.4.20

3249158 7

Figure 1.4.17

8 5 7 1 9 4 2 3

5 8 1 7 4 9 2 38 1 9 2 3
5 7 4

8 1 9 2 3
5 7 4 Split

File A

File A

File B

File B
File C

File C

Merge

Figure 1.4.21

Institution licence - St Martins School Essex

1.4 Sorting algorithms

36

Bubble sort is an in-memory sorting algorithm

Bubble sort is an in-memory sort algorithm.

All the data to be sorted has to fit into main memory otherwise bubble sort cannot do its job.

It is therefore not suitable for sorting large volumes of data which could not fit into main memory.

Bubble sort is slow to sort

There is another reason why bubble sort would not be appropriate for significant
volumes of data even when this data does fit into main memory:

It is slow at sorting because it has to perform too many steps!

For example, for 1000 items, the total number of comparisons is 500500.

Table 1.4.3 shows how the number of comparisons varies with the number of
item to be sorted.

Merge sort faster than bubble sort

An in-memory sort of an unsorted list of n items where n is greater than about 16 is
faster with merge sort than with bubble sort - see Table 1.4.4.
The worst-case of a completely unsorted list is usually considered when making the
comparison because it is possible to stop bubble sort when no exchanges have
taken place on a pass.

For example, if the list is sorted already then bubble sort can be halted at the end
of the first pass.

Table 1.4.4 shows how the number of operations for merge sort and bubble sort
compare as the number of items n increases (technically, the parameter n in the
bubble sort formula is one less than the number of items but it is acceptable to
ignore this difference if we only want to get a feel for growth rate).
How much memory space is required?

Merge sort requires twice as much memory space as bubble sort to perform its
sorting operation. In bubble sort, the rearrangement of items takes place within
the data structure containing the list of items.

In merge sort, a second data structure is needed for the merge operation.

n

1000 500500

10000 50005000

100000 500050000

1000000 500000500000

10000000 50000005000000

Table 1.4.3

Total number of
comparisons

Information

The worst-case proves to be the most useful in practice when comparing algorithms.
For example, consider a safety-critical system such as a program that controls part of an aircraft.
The designer of the control needs to know, for example, “how long it will take from the pilot pressing the
button that activates the control before the aircraft responds?”.
If this time is too long another algorithm/mechanism will be needed that takes less time.
Note that it doesn’t matter if the system works fast enough on average or even nearly every time.
It must work fast enough on every occasion!

n
No of
steps

No of
steps

2 4 3

4 16 10

8 48 36

16 128 136

32 320 528

64 1024 2080

128 1792 16512

256 4096 65792

512 9216 131328

Table 1.4.4

Merge
sort

Bubble
sort

Institution licence - St Martins School Essex

1 Fundamentals of algorithms

37

In this chapter you have covered:

 ■ The merge sort algorithm which is an example of a divide and conquer algorithm, meaning that the problem
of sorting an unsorted list of items is solved by dividing the problem into subproblems, solving the subproblems,
and then merging the results to produce the sorted list.

 ■ The bubble sort algorithm works by exchanging pairs of items that are out of order until no more of these pairs
exist.

 ■ Comparing and contrasting merge sort and bubble sort algorithms

• Merge sort is well-suited to sorting huge amounts of data that do not fit into main memory.

• Bubble sort can only sort data that fits into and is resident in main memory.

• An in-memory sort of an unsorted list of n items where n is greater than about 16 is faster with merge sort
than with bubble sort. The worst-case of a completely unsorted list is usually considered when making this
comparison because it is possible to stop bubble sort when no exchanges have taken place on a pass.

• Merge sort requires twice as much memory space as bubble sort to perform its sorting operation.

Question

You have a choice of two sorting algorithms, bubble sort and merge sort.
You are asked to choose which of the two sorting algorithms would be best or the only possible one to use
for the following tasks:
(a) Sorting data stored on magnetic disk that does not fit into main memory.
(b) Sorting in ascending numerical order an unsorted list of 30 integers held in main memory.
(c) Sorting in ascending numerical order an unsorted list of 10000 integers held in main memory into
ascending numerical order.

3

Institution licence - St Martins School Essex

38

 ■ 2.1 Data types
Introduction to programming
The concept of a data type

The computer programs that you write in this course will control physical
processes involving matter and energy at the level of atoms and electrons inside
CPUs and memory but you will rely upon computing abstractions to hide
much of this from you (until you hear the fan switch on that keeps a CPU
cool).
Information is typically stored using just two levels of energy, one higher in
energy than the other.
It is convenient to use a two symbol code consisting of 1 and 0 to represent
these two levels.
The symbol 1 is usually chosen for the higher energy state and the symbol 0 for
the lower energy state.

Computer memory, e.g. RAM, consists of a collection of individual storage
cells, each capable of storing a single bit. A bit or binary digit encodes an
energy state, i.e. 1 or 0.
Memory bits are typically grouped into blocks of 8, 16, 32, or 64 bits.
A 16-bit block might store the following bit pattern

0101110100000110

Learning objectives:

 ■ Understand the concept of a
data type

 ■ Understand and use the
following appropriately

• integer

• real

• Boolean

• character

• string.

2 Programming
2 Programming

I’m a higher
energy state.
I look down
on him.

I’m a lower
energy state.
I get a crick
in my neck.

RAM

Figure 2.1.1 Using two levels of energy to
store information in RAM

Key term
Bit pattern:
A bit pattern is a finite

sequence of 0s and 1s, e.g.

0100100001101001.

Key term
Bit:
A bit is a binary digit which is

either 0 or 1.

Key term
Sequence:
A sequence is simply an ordered

collection of things, e.g. a b c . . .

or the sequence of digits in a

telephone number, 433004.

Information
This textbook covers Python
(version 3), C# and VB.NET,
the programming languages
supported by AQA for
examinations from 2022
onwards. In addition, it also
covers programming languages
Java and Pascal/Delphi.

Institution licence - St Martins School Essex

2 Programming

39

Computers process and store information, the question is:
“What information do we want bit pattern 0101110100000110

to represent?”
Fortunately, we get to choose the interpretation when we write programs.
Here are three choices of interpretation that we could make

1. integer - a positive or negative whole number

2. real - a positive or negative number with a fractional part

3. character - a unicode character representing a symbol in an alphabet.

The act of assigning an interpretation is what is meant by data typing and the
specific interpretation, e.g. integer, is a data type.
Figure 2.1.2 shows what the three different interpretations of the bit pattern
0101110100000110 actually mean.
Until the bit pattern is interpreted, it is called a datum.
A datum is a finite sequence of 0s and 1s, e.g. 0101110100000110.
After interpretation it represents specific information, e.g. 23814 could be the
attendance figure for a cricket match, 46.5 could be a cricketer’s average batting
score, and the lucky charm worn around the cricketer’s neck (in Chinese it
means Kongtong mountain).
We call a collection of bit patterns data. Data is the plural of datum.

Unless we know the meaning assigned to bit patterns, the only things that we
see in a computer are data, i.e. uninterpreted bit patterns.

This is the first role performed by a data type: to establish what the bits/bit
patterns mean.

The second role is to specify the number of bits allocated to each datum.

For example, characters might be represented in 8 bits (extended ASCII - see
Chapter 3.5), integers in 32 bits, real numbers in 64 bits.

Table 2.1.1 shows some 8-bit patterns and their interpretation as ASCII
characters.

Characters are written surrounded by either single or double quotes, e.g. 'H',
"H" depending on the programming language used.
If 8-bit patterns are “strung together”, e.g. to form a 16-bit bit pattern, and
each 8 bits of the 16-bit bit pattern is interpreted as a character then we have
created another data type called string.
For example using Table 2.1.1, 0100100001101001 can be interpreted as
meaning string "Hi" where 01001000 means "H" and 01101001 means "i".

Key point
Meaning of datum:
A datum is a finite sequence of

0s and 1s, e.g. 0100100001101001.

0101110100000110

23814

46.5崆

Integer

Real
Unicode
character

Figure 2.1.2 Different
interpretations of the
given bit pattern

Key term
Integer data type:
A machine integer is a datum

whose data type represents some

finite subset of the mathematical

integers.

A fixed number of bits are

allocated to the datum,

e.g. 32 bits.

Signed 32-bit (4-byte) integers

range in value from

 -2,147,483,648 through

 2,147,483,647.

The integer data type is free of

rounding errors. Mathematical

integers are represented exactly.

However, this type has a limited

range.

崆

Bit pattern Character
01001000 H
01101001 i
01101111 o
00100000 space

Table 2.1.1 Some 8-bit patterns interpreted as ASCII characters

Institution licence - St Martins School Essex

2.1 Data types

40

The third role is to define the operations allowed on data.
For example, if the interpretation is data type integer then permitted operations
should include at least addition, subtraction, and multiplication which produce
a result of data type integer. For example 3 + 6 = 9.

If the interpretation is data type real then permitted operations should include
at least addition, subtraction, multiplication and division which produce a
result of data type real. For example 3.3 + 6.6 = 9.9.

What would not be allowed is any attempt to store the result of dividing one
real by another if the destination of the result is storage reserved for an integer.

If the interpretation is data type character then a permitted operation could be
to join two or more characters together to form a string (of characters).
For example, "H" + "i" = "Hi".

What would not be allowed is any attempt to join an integer to a character.
For example, the operation "H" + 6 would not be allowed1.

If the interpretation is data type string then a permitted operation could be to
join two or more strings together to form a new string (of characters).
For example, "Hi" + " " + "Ho" = "Hi Ho". The space character is indicated by
 " ". It has bit pattern 00100000 in 8-bit ASCII. In this example, double
quotes have been chosen for a string value and for a character value (different
programming languages use different conventions).

Summarising, a data type
1. is a method of interpreting a bit pattern
2. specifies the number of bits allocated to each datum
3. defines which operations may be carried out on the bit pattern.

Programming languages provide abstractions to make life easier for you as a
programmer. One such abstraction, is data typing.
Some programming languages include another data type, Boolean.
This data type has two possible values which are

True
False

It just remains to choose one bit pattern to represent True and a different bit
pattern or bit patterns to represent False.
One 16-bit possibility is shown in Table 2.1.2. Other bit-pattern lengths may
be used. Any bit pattern which isn’t all 1s may be interpreted as representing
False.

1 There are always exceptions to the rule: some programming languages impose no
data type checking.

Key concept

Data type:
A data type
1. is a method of interpreting a

bit pattern
2. specifies the number of bits

allocated to each datum.
3. defines which operations

may be carried out on the bit
pattern.

Did you know?
Real or floating point data
type:
Computers store and
manipulate real numbers
such as 3.142 using the IEEE
754 floating point standard
(knowledge of this is not
required for GCSE Level).
Real or floating-point numbers
are little more than scientific
notation encoded as bits.
Real numbers can be very large
or very small on a scale from the
size of galaxies to the size of sub-
atomic particles.
An alternative name for the data
type real is float.

Key term
Boolean data type:
Two values only belong to the

data type Boolean:

• the truth value True

• the truth value False.

Bit pattern Boolean value
1111111111111111 True
0000000000000000 False

Table 2.1.2 Some possible 16-bit patterns to
represent the two Boolean values, True and False

Key point
Value:
Value means a datum together

with its interpretation.

Institution licence - St Martins School Essex

2 Programming

41

The Boolean data type values True and False are used where the answer to a question is Yes or No.
For example, Question: Is it true that the sun rises in the East?

Answer: Yes
Rephrasing as a true or false statement

Statement: The sun rises in the East
Boolean value of statement: True

Another example,
Statement: The sun rises in the West
Boolean value of statement: False

Data types in some programming languages
Table 2.1.3 shows some of the integer, real, character, string and Boolean data types for the programming languages
C#, Java, Pascal, Delphi, Python and VB.NET.

Language Integer Real Boolean Character String
C# int: 32-bit

signed integer
float: 32-bit IEEE
754 floating point
double: 64-bit
IEEE 754 floating
point

bool: true/false char string

Java int: 32-bit
signed integer

float: single-
precision 32-bit
IEEE 754 floating
point
double: 64-bit
IEEE 754 floating
point

boolean: true/false char: single
16-bit
Unicode
character

String

Pascal Integer Real Boolean: True/False Char String
Delphi Integer:

32-bit two’s
complement
integer
-2147483648
to
2147483647

Double: 64-bit
IEEE 754 floating
point supporting
approximately 15
decimal digits of
precision in a range
from 2.23 x 10-308
to 1.79 x 10308

(Real available as
well)

Boolean: True/False Char: holds
a single
character in 8
bits.

AnsiChar:
character type
guaranteed to
be 8 bits in
size

String

Python int: 32-bit
signed integer

float: double-
precision 64-bit
IEEE 754 floating
point

bool: True/False unicode str

VB.NET Integer: 32-bit
signed integer

Double Boolean: True/False Char: 2 bytes String: 0 to
approximately 2
billion Unicode
characters (but
depends on platform)

Table 2.1.3 Integer, Real/float, Boolean, Character, String data types for the given programming languages

Institution licence - St Martins School Essex

2.1 Data types

42

In this chapter you have covered:

 ■ The concept of a data type

 ■ The meaning and use of the following data types

 ■ integer

 ■ real

 ■ Boolean

 ■ character

 ■ string.

Questions
Complete the table by assigning to each value the correct data type from the following list: integer, real,

character, string, Boolean.

Name two possible data type interpretations of the bit pattern 0100100001101001.

Would the following addition of two values be a valid operation in a programming language that enforced
strict data typing: "two" + 3?

What is meant by data type?

Is 22100
 in the integer range 0 to 2,147,483,647?

What is the data type of the result of evaluating the following expressions
(a) 5 > 6 (b) 5 < 6 (c) 7 = 7?
(Read 5 > 6 as the statement “5 is greater than 6”, 5 < 6 as the statement “5 is less than 6”)

A count is to be taken of the number of tickets sold for a school
concert. The count will be incremented by one each time a ticket is
sold.
Select the most suitable data type for this count (tick one box only).

Telephone numbers need to be stored in the following format
ddddd dddddd where d is a digit.
For example, 01296 433014 which consists of five digits followed by
a space followed by six digits.
Select the most suitable data type for a telephone number (tick one
box only).

The circumference of a circle of radius r is to be calculated to
three decimal places. Select the most suitable data type for the
circumference result (tick one box only).

1

2

3

4

5

6

7

8

Value Data type
"H"

3.142

"Hi"

True

18537

Count Tick one box
String

Real

Integer

Count Tick one box
String

Real

Integer

Count Tick one box
String

Real

Integer

9

Institution licence - St Martins School Essex

43

 ■ 2.2 Programming concepts

Variable declaration
Variable
Data which are subject to change are
modelled in a program by variables.
A variable is simply a container in which
a value may be stored for subsequent
manipulation within a program - Figure
2.2.1.

The stored value may be changed by the
program as it executes its instructions,
hence the use of the term “variable” for the
container.

Under the bonnet, the container is realised
as one or more reserved memory locations in
the RAM of the machine.

Variable declaration
A variable declaration is one way of causing a variable to be created.

For example, in Pascal/Delphi, an integer variable, x, may be declared as
follows

Var

 x : Integer;

The amount of reserved memory allocated to a variable and what is allowed to
be stored in this reserved memory depend upon its data type.

This declaration reserves a named space in memory (RAM) for a value of data
type Integer. The space is named x and the amount of RAM is four bytes
because that is what Pascal’s Integer data type specifies1.

By assigning different data types to each variable, integers, numbers with a
fractional part, characters, strings, arrays, records and other entities, may be stored
in these variables.

In some languages, e.g. Python, variables do not need an explicit declaration
for memory space to be reserved. The declaration happens automatically
when a value is assigned to a variable. Values in Python are strongly typed but
variables are not.

1 It is implementation dependent but four bytes is typical.

Learning objectives:

 ■ Use, understand and know
how the following statement
types can be combined in
programs

• variable declaration

• constant declaration

• assignment

• iteration

• selection

• subroutine (procedure/
function)

 ■ Use definite (count-controlled)
and indefinite iteration
(condition controlled),
(including indefinite iteration
with the condition(s) at the
start or the end of the iterative
structure)

 ■ Use nested selection and nested
iteration structures

 ■ Use meaningful identifier
names and know why it is
important to use them.

2 Programming
2 Programming

6

Figure 2.2.1 shows the
value 6 about to be stored in
variable x represented by the
yellow container

Key concept

Variable:
In programming, a variable can
be thought of as a container for
a value.
Like a physical container a
variable may be empty, in which
case we say that its value is
undefined.

Institution licence - St Martins School Essex

2 Programming

44

Initialising variables

It is common practice to initialise a variable when it is declared.
For example, in Pascal/Delphi

Var

 x : Integer = 6;

In C#, an integer variable, x, may be declared and initialised as follows

int x = 6;

In Java, an integer variable, x, may be declared and
initialised as follows

int x = 6;

In VB.NET, an integer variable, x, may be declared and initialised as follows

Dim x As Integer = 6

Constant declaration
Some of the data used in programs never change. For example, the ratio of the
circumference of a circle to its diameter which is approximately 3.142.

Data which never change are modelled in a program by constants.

This means stating their values explicitly. To make a program easier to read,
understand and change, a constant is given a symbolic name which can be
used throughout the program whenever the value of the constant is required.

For example, in Pascal/Delphi a constant for the value 3.142 can be defined
using the language keyword Const as follows

In C# the symbolic name by convention is in uppercase and can use
underscores for spaces, e.g. NO_OF_DAYS_IN_WEEK. The following is an
example of a constant definition in C#

(public/private) const float PI = 3.142f;
or

(public/private) const double PI = 3.142;

The data type double is a double-precision 64-bit IEEE 754 floating point
number. The data type float is a single-precision 32-bit IEEE 754 floating
point number. In the case of float the letter f must be appended to the value.

In Java the symbolic name by convention is in uppercase and can use
underscores for spaces. The following is an example of a constant definition in
Java

(public/private)static final float PI = 3.142f;
or

(public/private) static final double PI = 3.142;

Key point
Modelling data by variables:
Data which are subject to
change are modelled by
variables.

Key concept

Constant:
In programming, data which
never change are modelled in
a program by constants. This
means stating their values
explicitly.
To make a program easier
to read, understand and
maintain, a constant is given a
symbolic name which can be
used throughout the program
whenever the value of the
constant is required.

Key concept

Variable declaration:
A variable declaration is one
way of causing a variable to be
created.

Questions
What is a variable?

What is a variable
declaration?

What is a constant
declaration?

1

2

3

Symbolic name for constant

Const

 Pi = 3.142;

Language keyword

Information
This textbook covers Python
(version 3), C# and VB.NET,
the programming languages
supported by AQA for
examinations from 2022
onwards. In addition, it also
covers programming languages
Java and Pascal/Delphi.

Institution licence - St Martins School Essex

2.2 Programming concepts

45

The data type double is a double-precision 64-bit IEEE 754 floating point
number. The data type float is a single-precision 32-bit IEEE 754 floating
point number. In the case of float the letter f must be appended to the value.

In VB.NET
Const pi As Double = 3.142

Python has no way to declare constants. Variables with symbolic names written
in uppercase letters and with underscores for spaces signify that their values
will be used as constants but the language cannot prevent the values from being
changed. It is only a convention.

Assignment
An instruction which alters the value of a variable is called an assignment
statement and the operation is called assignment. A value is copied into
a variable when a computer executes an assignment statement. The action
replaces the currently stored value in the variable as illustrated in Figures 2.2.2
and 2.2.3 for a variable x.

For example, in Pascal/Delphi an assignment statement that assigns the value 6
to variable x is written as follows

x := 6;

The operand, x, to the left of the := operator is the name of the variable
and the operand, 6, to the right of the := operator is the value that will be
stored in the variable when assignment is carried out. The value in x before
assignment occurs is overwritten by the assignment operation. This is shown by
example in Figure 2.2.3 where the value 4 is overwritten by the value 6.

The := operator is called the assignment operator. In pseudo-code, a left-
pointing arrow ← is used to represent the assignment operator.

The term “statement” is used universally for historical reasons. It would have
been better to have adopted the term “command” or “instruction”.
Examples of assignment statements and assignment operators in other
programming languages and in pseudo-code are shown below.

In C#, x = 6;

In Java, x = 6;

In Python, x = 6

In VB.NET, x = 6

In pseudo-code, x ← 6

(See Chapter 1.1 for an explanation of pseudo-code.)

Questions
The calculation 2 x 3.141592654 x radius is made in several places in a
program. Give two reasons why replacing 3.141592654 by the named
constant pi could improve this program.

4

6

Figure 2.2.2 shows the
value 6 about to be stored in
variable x which currently
contains the value 4

4

Figure 2.2.3 shows that
value 4 has been replaced by
value 6

6

Key term

Assignment statement:
An instruction which alters the
value of a variable is called an
assignment statement.
The operation is known as
assignment.

Questions
What is assignment ?5

Institution licence - St Martins School Essex

2 Programming

46

Iteration

Suppose we are required to sum the first 10 natural numbers, i.e.

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

One way that this could be done is to repeat the addition of each natural number in turn to a running total,
initialised to 0, until all 10 natural numbers have been added together.

In pseudo-code this might be expressed as shown in Table 2.2.1.

Figures 2.2.4 and 2.2.5 show the execution of the assignment statement

NatNo ← NatNo + 1

split over two stages. NatNo contains the value 6 just before this statement is executed and afterwards it contains
the value 7.
The pseudo-code in Table 2.2.1 illustrates repetition or iteration. The general form of such iteration is

Repeat

 instructions

Until condition

which means that the instructions between the words Repeat and Until are
executed repeatedly until the condition specified in Until condition is met.

The instructions between Repeat and Until are
known as the loop body. The iteration performed
by Repeat Until is called a loop because
execution loops back and forth between Repeat
and Until.
The condition occurring in Until condition is
called the terminating condition of the loop.

RunningTotal ← 0

NatNo ← 1

REPEAT

 RunningTotal ← RunningTotal + NatNo

 NatNo ← NatNo + 1

UNTIL NatNo = 11

Assign the value 0 to variable RunningTotal

Assign the value 1 to variable NatNo
Add NatNo to current value
in RunningTotal, replace
this current value with the
value which results from the
addition

Add 1 to current value
in NatNo, replace this
current value with the value
which results from this
addition Stop repeating when value in NatNo reaches 11

Table 2.2.1 Pseudo-code example which adds the first 10 natural numbers

Figure 2.2.4 shows the value
6 stored in variable NatNo,
being copied then added to 1
and the result 7 about to be
stored

6

6 + 1

NatNo

7
Figure 2.2.5 shows the
value 7 stored in variable
NatNo

NatNo

Key term

Iteration statements:
Instructions are executed
repeatedly until the terminating
condition is met.

Institution licence - St Martins School Essex

2.2 Programming concepts

47

Table 2.2.3 shows another way to add the first 10 natural numbers.

Questions
Trace the execution of the pseudo-code shown in Table 2.2.1. Record in Table 2.2.2 the value of NatNo
and RunningTotal as they change during the execution. The first value of each variable has been recorded
for you in the table.

The final value of RunningTotal should be 55.

How would you change the pseudo-code in Table 2.2.1 so that when executed, it adds the first 15 natural
numbers?
Check that your change is correct by hand-tracing the resulting pseudo-code. The final value of
RunningTotal should be 120.

6

7

Table 2.2.2 Trace table for NatNo and RunningTotal

NatNo RunningTotal
1 0

RunningTotal ← 0

NatNo ← 1

WHILE NatNo < 11

 RunningTotal ← RunningTotal + NatNo

 NatNo ← NatNo + 1

ENDWHILE

Stop repeating when value in NatNo reaches 11

Table 2.2.3 Pseudo-code example which adds the first 10 natural numbers

Institution licence - St Martins School Essex

2 Programming

48

Questions
Trace the execution of the pseudo-code shown in Table 2.2.3. Record in Table 2.2.4 the value of NatNo

and RunningTotal as they change during the execution. The first value of each variable has been
recorded for you in the table.

How would you change the pseudo-code in Table 2.2.3 so that when executed it adds the first 15 natural
numbers?
Check that your change is correct by hand-tracing the resulting pseudo-code. The final value of
RunningTotal should be 120.

What is the final value of RunningTotal when the following pseudo-code is executed by hand if x in
RunningTotal x Count is the multiplication operator?

RunningTotal ← 1

Count ← 2

REPEAT

 RunningTotal ← RunningTotal x Count

 Count ← Count + 1

UNTIL Count = 11

8

9

Table 2.2.4 Trace table for NatNo and RunningTotal

NatNo RunningTotal
1 0

10

Institution licence - St Martins School Essex

2.2 Programming concepts

49

Sequence
The following two instructions (assignment statements) of the pseudo-code in
Table 2.2.3 are executed one after the other

RunningTotal ← RunningTotal + NatNo

NatNo ← NatNo + 1

They form a sequence of steps governed by the following rules

1. The steps are executed one at a time

2. The order in which the steps are written is the order in
which they are executed

3. Each step is executed exactly once.

We say that this part of the solution to the problem of adding the
first 10 natural numbers is constructed using a program design
principle called sequence.

Selection
If statement
If solutions to problems consist only of steps in sequence then there is no possibility of solving problems which
need to deviate from the given sequence of execution if circumstances require this.
For example, suppose instead of summing the first 10 natural numbers we are required to sum only the even
numbers amongst the first 10 natural numbers, using the pseudo-code in Table 2.2.3. The solution must test to see
if the next natural number is even. Only if it is even will it then be added it to the running total.
The revised sequence section of the pseudo-code solution in Table 2.2.3 will take the form

The conditional part of this pseudo-code fits the general form
IF condition THEN

 step

where condition specifies the circumstance under which the step is to be executed. If condition is true
then step is executed; otherwise it is not.

IF condition THEN step ENDIF is a statement known as selection.

Suppose instead of summing the first 10 natural numbers we are required to sum the even numbers in one running
total and the odd numbers in a different running total. We now have two alternative steps to be executed.
The revised sequence
section of the pseudo-
code solution in Table
2.2.3 will take the form

Key term

Sequence statements:
Statements are executed one at
a time, one after another in the
order in which they are written
with each executed exactly once.

Questions
A variable x contains the value 7 and a
variable y the value 3.

Using only sequence, write assignment
statements that swap the values
contained in x and y. You may use

Temp, a third variable.

11

IF NatNo is even THEN

 RunningTotal ← RunningTotal + NatNo

ENDIF

NatNo ← NatNo + 1

condition

step

IF NatNo is even THEN

 EvenRunningTotal ← EvenRunningTotal + NatNo

ELSE

 OddRunningTotal ← OddRunningTotal + NatNo

ENDIF

NatNo ← NatNo + 1

step 1

condition

step 2

Institution licence - St Martins School Essex

2 Programming

50

The general form of selection in which selection is between one of two alternative steps is

IF condition THEN

 step 1

ELSE

 step 2

ENDIF

where condition determines whether step 1 is executed or step 2 is
executed. We thus have two forms of IF selection statement:

Subroutine
A subroutine is a named self-contained block of instructions, e.g. drawsquare.

By encapsulating and naming a block of instructions in a program it becomes
possible to call the block from other parts of the program. This is very useful in
situations where the same block of instructions or action or calculation needs to
be repeated in multiple places in a program.

Suppose that we wish to draw the pattern containing six squares shown in
Figure 2.2.6. The size (side-length) of the squares increases by the same fixed
amount. One way of drawing a square with length of side, size, is to use a
pen-carrying turtle moving under the guidance of the sequence of instructions or commands shown in Figure
2.2.7.

Table 2.2.5 Pseudo-code to find the
largest of two numbers

IF No1 > No2 THEN

 Largest ← No1

ELSE

 Largest ← No2

ENDIF

IF condition THEN

 step 1

ELSE

 step 2

ENDIF

IF condition THEN

 step

ENDIF

Key term
Selection:
A selection statement takes one
of two possible forms:

IF condition THEN
 step

ENDIF
or

IF condition THEN
 step 1
ELSE
 step 2
ENDIF

The condition determines
whether or not step is executed,
step1 or step2 is executed.

Key fact
Combining principles:
The three combining principles
(sequence, iteration/repetition
and selection/choice) are basic
to all imperative programming
languages.

Questions
Rewrite the following IF statements as a single IF THEN ELSE
ENDIF statement
IF Age < 37 THEN AgeCategory ← 'A' ENDIF

IF Age >=37 THEN AgeCategory ← 'B' ENDIF

The pseudo-code in Table 2.2.5 finds the largest of two numbers,
No1, No2.
The value of the largest of the two numbers is stored in variable
Largest.
(a) If No1 stores the value 6, No2 the value 3 which branch of the
selection statement is executed, THEN or ELSE? Explain your answer.
(b) If No1 stores the value 6, No2 the value 7 which branch of the
selection statement is executed, THEN or ELSE? Explain your answer.

12

13

Figure 2.2.6 Pattern of squares

Institution licence - St Martins School Essex

2.2 Programming concepts

51

It is good practice to use active verbs for subroutine names, e.g. Read, Write, Add, DoSomething.

If this sequence of instructions in Figure 2.2.7 is named drawsquare then a program could call upon this
subroutine to draw a square of a specific size, say, 25, as follows: drawsquare(25)
A program that calls upon the subroutine drawsquare
is said to call the subroutine drawsquare.

To draw a differently-sized square of size, say, 35,
drawsquare would need to be called upon as follows

drawsquare(35)

The square-drawing turtle subroutine itself could be
written as shown in Table 2.2.6.

The variable size is called the formal parameter of the
subroutine: it is used in the body of the subroutine to
define how big the square will be.

When the subroutine is called, the actual parameter 25
or 35, for example, provides a specific value for size,
and thus determines how big the square will be in each
call.

The subroutine drawsquare itself calls subroutines turtle.forward and turtle.left.

To draw the pattern of squares in Figure 2.2.6 we need the sequence of calls to subroutine drawsquare shown in
Table 2.2.7.
Figure 2.2.7 shows how the drawsquare subroutine could be defined in
Python 3.4 and how it would be called to produce the pattern of squares shown
in Figure 2.2.6.
A subroutine may also contain its own variable, type, and constant declarations.
In fact, it may also define other subroutines within its declaration section.

turtle.forward(size)

turtle.left(90)

turtle.forward(size)

turtle.left(90)

turtle.forward(size)

turtle.left(90)

turtle.forward(size)

turtle.left(90)

left(90)forward(size)
Figure 2.2.7 Path followed by a turtle obeying the
sequence of commands shown opposite

Table 2.2.6 Subroutine drawsquare(size) defined

SUBROUTINE drawsquare(size)

turtle.forward(size)

turtle.left(90)

turtle.forward(size)

turtle.left(90)

turtle.forward(size)

turtle.left(90)

turtle.forward(size)

turtle.left(90)

ENDSUBROUTINE

Body

drawsquare(25)

drawsquare(35)

drawsquare(45)

drawsquare(55)

drawsquare(65)

drawsquare(75)

Table 2.2.7 Calling subroutine
drawsquare(size) with different
actual parameters

Institution licence - St Martins School Essex

2 Programming

52

Procedures and functions
There are two types of subroutines:

• Procedure
• Function

A procedure is a subroutine consisting of one or more statements or actions which may or may not return
a result. If it returns a result it does so through output parameters in its interface - see page 126. The statements
are referred to collectively by a name assigned to the procedure called the procedure name. The procedure must
be declared/defined – its name must be stated and its statements listed. The procedure’s statements are executed
wherever its name is encountered in the executable part of a program - see Figure 2.2.8. This is called calling a
procedure.

Key term
Subroutine:
A subroutine is a named self-
contained block of instructions,
e.g. drawsquare, which may
be called (i.e. executed) from
anywhere within a program
where its name appears.

Figure 2.2.8 Python 3.4 program to draw a pattern of squares

Key term
Procedure:
A procedure is a subroutine
consisting of one or more
statements or actions which may
or may not return a result.

Institution licence - St Martins School Essex

2.2 Programming concepts

53

In Pascal, a procedure is declared and used as follows:

Table 2.2.9 shows a VB.NET program which declares a user-defined procedure
called DoExample.
The procedure DoExample is
called three times when the program
executes. Main() is called to run
the program.

In VB.NET, Main()is a standard
procedure name found in every
executable module (Visual Studio
supplies a module template
containing Main()).

VB.NET doesn’t use the keyword
Procedure but instead surrounds
the body of the procedure with the keywords Sub and End Sub. Instead
of the language keyword Program as in Pascal, VB.NET uses the keyword
Module. It has a matching keyword End Module placed at the very end of
the program.

Program ProcedureExample;

Var

 Ch : Char;

Procedure DoExample;

 Begin

 Writeln('The sun ');

 Writeln('has got its hat on, ');

 Writeln('hip hip hooray.');

 End;

Begin

 Repeat

 DoExample;

 DoExample;

 Write('Continue Y/N? ');

 Readln(Ch);

 DoExample;

 Until Ch In ['N','n'];

End.

Name of procedure

Procedure heading

Procedure body

Procedure call
Another procedure call

Yet another procedure call

Table 2.2.8 Pascal program containing calls to procedures DoExample, Writeln, Write, Readln

Writeln is a procedure
which writes a line of
text to the screen,
e.g. The sun , then
moves the cursor to the
beginning of the next line

Readln is a procedure
which reads a line of
text from the keyboard,
e.g. N

Readln(Ch) reads
the first character
typed and stores it in
variable Ch then skips
the rest of the line, if
there is more

Checks to see if
the value stored in
variable Ch is
'N' or 'n'

Another procedure call
Another procedure call

Write is a procedure
which writes text to
the screen without
moving the cursor to
the beginning of the
next line

Module ProcedureExample
 Sub DoExample()
 Console.WriteLine("The sun has ")
 Console.WriteLine("got its hat on, ")
 Console.WriteLine("hip hip hooray.")
 End Sub
 Sub Main()
 DoExample()
 DoExample()
 DoExample()
 Console.ReadLine()
 End Sub
End Module

Table 2.2.9 VB.NET program containing calls to a procedure DoExample

Institution licence - St Martins School Essex

2 Programming

54

Figure 2.2.9 shows one call to a Python 3.5 procedure
with the name do_example which has been defined
using Python’s keyword def.

Procedure interface
A procedure interface is a mechanism for passing
data into and out of a procedure.

In Pascal, for example, x is known as a formal
parameter as shown in Table 2.2.10. This is a variable
used in the body of the procedure and which appears
in the interface. When the procedure is called an
actual parameter is supplied through the procedure’s
interface, e.g. DoInterfaceExample(MyName)
where the variable MyName is the actual
parameter. The value in MyName is copied into
the variable x when the procedure is called by
DoInterfaceExample(MyName).

Suppose MyName stores the string 'Fred Bloggs',
then the variable x in the body of the procedure will
contain the string 'Fred Bloggs'.

Function
A function is a type of subroutine designed to always return a single result. The mechanism by which the result is
returned is different from that used by a procedure.

Functions may appear in expressions such as 5 x cube(3) where cube is a mathematical function.
This is possible because a function returns a value.
So 5 x cube(3)evaluates to 5 x 27 which evaluates to 135.

In the first evaluation step, cube(3) is replaced by 27, the result returned from the execution of function
cube(3). Any attempt to use a procedure in this manner would fail.

This is a key difference between a function and a procedure.

Figure 2.2.9 Shows one call to a Python 3.5 procedure
with the name do_example which has been defined
using Python’s keyword def

Key concept

Procedure interface:
A procedure interface is
a mechanism for passing
data into and out of a
procedure.

Programming task

In a programming language with which you are familiar, write a program which defines a procedure that
displays the message passed it through its interface.

1

Procedure DoInterfaceExample (x : String);

 Begin

 Writeln('The value passed to this procedure is ', x:4);

 End;

Language keyword Procedure name Procedure interface{

Formal parameter

Table 2.2.10 Procedure interface in Pascal

Questions
What is a procedure
interface?

14

Institution licence - St Martins School Essex

2.2 Programming concepts

55

Procedure calls do not support a mechanism by which a value is substituted
for the procedure call when the latter completes and returns control. If the
procedure did then it would be a function2.

For example, the following does not make sense as an expression because
drawsquare doesn’t “evaluate” to a single value which can be multiplied by 5
to produce a numeric result, e.g. 127:

 5 x drawsquare(3)where drawsquare is a procedure.

Because functions “evaluate” to a single value3 they may appear on the right-
hand side of an assignment statement.

For example,
 x ← cube(3)

After this statement is executed, the variable x contains/stores the value 27, because the result of calling cube(3)
is 27.

Attempting the following would fail because Writeln is a procedure. It also would not make sense.

x := Writeln('The sun has got its hat on');

In Pascal, the code Writeln('The sun has got its hat on') is a command which writes the string
'The sun has got its hat on' to the screen then moves the screen’s cursor to the beginning of the next
line.

Figure 2.2.10 shows a function cube(n) defined in
Python 3.5, and then called with argument 3.

In function cube(n), n is called the formal parameter.
When functions are called we use a slightly different
terminology. The actual parameter is now called the
argument.

For example, in the function call cube(3), 3 is the
argument to the function.

Pascal makes a clear distinction between procedure and
function by using different keywords for defining each.
Table 2.2.11 shows a function Cube being defined using
the language keyword Function. As Pascal is a strongly
typed language, the data type of the formal parameter and
the data type of the returned value must be specified. It is
Integer for both in this example.

2 Impure functions in addition to returning a result, may have side effects which is the collective name for other things that the
function may do as well.

3 In some programming languages functions are allowed to return a structured result i.e. a result with more than one value.

Key term
Function:
A function is a type of
subroutine designed to always
return a single result. It may
appear in expressions and
on the right hand-side of an
assignment statement unlike a
procedure.

Figure 2.2.10 Function cube(n) defined and used in
Python 3.5Questions

State one key difference between a function and
a procedure.

15

Institution licence - St Martins School Essex

2 Programming

56

C#
In C#, the approach to defining subroutines is different from Pascal. In C#, subroutines are called functions,
whether in their behaviour they are procedures or functions. In C#, the subroutine heading takes the following
form

<visibility> <modifier> <return type> <subroutine-name>(<parameters>)

The first part is the visibility, and is optional. If not specified then the function will be private.
The second part is the modifier, and is optional. If it is specified then the function belongs to the class otherwise it
belongs to a specific object of the class4. The modifier is the keyword static.

The third part is the return type. If this is void then no result is returned via the function mechanism. In this case
the subroutine behaves as a procedure. The term “void” is meant to indicate that the return value is empty or
nonexistent.

If the return type is a valid data type, e.g. int, then a result is returned via the function mechanism. In this case the
subroutine behaves as a function.

Figure 2.2.11 shows a Visual Studio 2015 C#
program which defines a procedure DoExample
which is called twice by Main. It is a procedure
because the specified return type is void. The
procedure belongs to the type class Program
because the modifier is specified with the keyword
static.

Figure 2.2.12 shows a Visual Studio 2015 C#
program which defines a function Add2Numbers
which is called by Main.

It is a function because the specified return type is
int.

The function belongs to the class Program because
the modifier of Add2Numbers is specified with the
keyword static.

Add2Numbers is used as a function in Main.
It appears on the right-hand side of an assignment
statement as follows

int answer = Add2Numbers(4, 8);

4 Object-oriented programming not in GCSE

Function Cube (n : Integer) : Integer;

 Begin

 Cube := n * n * n;

 End;

Table 2.2.11 Function Cube(n) defined in Pascal

Pascal uses the name of
the function to assign
the value that is to be
returned.

Alternatively, the
keyword Result can be
used in place of Cube.

Figure 2.2.11 C# DoExample procedure

Institution licence - St Martins School Essex

2.2 Programming concepts

57

Function Add2Numbers makes it possible to add
two numbers from various places in a program,
simply by calling this function instead of having to
write the calculation code each time.

Java
In Java, the approach to defining subroutines is
similar to C#’s approach.

<visibility> <modifier> <return-type>
<subroutine-name > (<parameters >) {

 statements

}

The statements between the braces, { and }, in a
subroutine definition make up the body of the
subroutine.

The first part is the visibility, and is optional. If it
isn’t specified then the function will be private.

The second part is the modifier, and is optional. If
it is specified then the function belongs to the class
otherwise it belongs to a specific object of the class5. The modifier is the keyword static.

The third part is the return type. If this is void then no result is returned via the function mechanism. In this case
the subroutine behaves as a procedure. The term
“void” is meant to indicate that the return value is
empty or nonexistent.

Figure 2.2.13 shows a Java program which defines
a procedure doExample which is called twice by
Main. It is a procedure because the specified return
type is void. The procedure belongs to the class
Procedure because the modifier of doExample
is specified with the keyword static.

Figure 2.2.14 shows a Java program which defines a
function add2Numbers which is called by Main.

It is a function because the specified return type is
int.

The function belongs to the class
JavaAdd2Numbers because the modifier of
add2Numbers is specified with the keyword
static.

add2Numbers is used as a function in Main. It
appears on the right-hand side of an assignment
statement as follows
int answer = add2Numbers(4, 8);

5 Object-oriented programming is not covered in GCSE

Figure 2.2.12 C# Add2Numbers function

Figure 2.2.13 Java doExample procedure

Institution licence - St Martins School Essex

2 Programming

58

VB.NET
In VB.NET, the approach to defining a function is as
follows
<visibility> <modifier> Function <FunctionName>

(<parameters>) As <return type>

 <Statements>

End Function

The first part is the visibility, and is optional. If it isn’t
specified then the function will be private.

The second part is the modifier, and is optional. The
third part is the return type, e.g. Integer.

Figure 2.2.15 shows a VB.NET program which
defines a function Add2Numbers which is called by
Main from two different places in Main.

The return type of this function is Integer.

Add2Numbers is used as a function in Main. It appears on the right-hand side of an assignment statement as
follows answer = Add2Numbers(4, 8)

It also appears in a second call as an actual parameter to the procedure WriteLine as follows

Console.WriteLine(Add2Numbers(6,9))

Figure 2.2.14 Java add2Numbers function

Figure 2.2.15 VB.NET Add2Numbers function

Programming task
In a programming language with which you are familiar:

(a) Write a program which defines a function that sums the first n natural numbers and returns this sum.
The program should display this sum for a given n.

(b) Write a program which defines a function that sums the even numbers amongst the first n natural
numbers and returns this sum. The program should display this sum for a given n.
(HINT: IF ((NatNo MOD 2) = 0) THEN Even ← True ELSE Even ← False)

(c) Write a program which defines a function that finds the largest of two given integers, x and y. The
program should display the largest.

2

Institution licence - St Martins School Essex

2.2 Programming concepts

59

Definite (count-controlled) and indefinite (condition-controlled) iteration
We introduced the concept of a loop in the section on iteration. In this section, we explore ways in which the
number of iterations (i.e. repetitions of the body of the loop) is determined.
We have two cases to consider, definite and indefinite iteration:

• In definite iteration, the number of iterations is known before the execution of the body of the loop
is started. For example, repeat 5 times writing the string “Hello World!” to the output device.

• In indefinite iteration, the number of iterations is not known before the execution of the body of the
loop starts. The number of iterations depends on when a specific condition is met (and this depends on
what happens in the body of the loop). For example, repeat printing the string “Hello World”until, when
asked, the user declines to continue.

Definite (count-controlled) iteration
Suppose that we wanted to output the value of a variable i, first when it is 1,
next when it is 2, and so on until it is 5. We could do this with a repeat until
loop or a while loop as shown by the pseudo-code examples in Table 2.2.12.
The number of iterations of each loop is known in advance, it is five, so these
are examples of definite iteration.
Note that a

• repeat until <condition> loop executes at least once

• a while <condition> executes zero or more times

Loop terminating condition
In both repeat and while loops quite a lot of work has to be done by the programmer.
In the example, the variable i has to be initialised, with 0 for the repeat loop and with 1 for the while loop.

It has to be incremented (i ← i + 1), and it has to be tested with the test condition i = 5 for the repeat loop
and i ≤ 5 for the while loop.

The repeat until loop terminates when its test condition is true.

The while loop terminates when its test condition is false.
In each case, the condition which causes execution of the loop body to terminate is known as the terminating
condition.

In definite iteration, this terminating condition is met after a known and predictable number of iterations.

Key term
Definite iteration:
In definite iteration the number
of iterations is known before
the execution of the body of the
loop is started.

i ← 0

REPEAT

 i ← i + 1

 OUTPUT i

UNTIL i = 5

i ← 1

WHILE i ≤ 5

 OUTPUT i

 i ← i + 1

ENDWHILE

Table 2.2.12 Definite iteration with repeat and while loops

Key term
Loop terminating condition:
The condition which causes
execution of the loop body
to terminate is known as the
terminating condition.

Institution licence - St Martins School Essex

2 Programming

60

For loop
There is an easier way for the programmer to program definite iteration called the for loop.
This pseudo-code for the for loop shown in Table 2.2.13 is executed as follows

Step 1: The initial value of variable i is set to 1, “i ← 1”. This step happens only once, regardless of how many
times the loop repeats.

Step 2: The “To 5” part evaluates the condition (i ≤ 5) by comparing the
value of i with 5.
If i is less than or equal to 5, the condition evaluates to true, and the
statement “OUTPUT i” is executed. This sends the value of i to the
output device, e.g. the VDU.
If i is greater than 5, the condition evaluates to false, and the loop
is exited. The instruction immediately following ENDFOR is then
executed next.

Step 3: The value of i is incremented by 1.
Step 4: The loop returns to step 2 to evaluate the condition again.

Note that if the initial value of i is greater than the 5 as shown in Table
2.2.14 the body of the loop should not be executed.

Variable i in this example is called the loop control variable.

A loop control variable must be an ordinal data type. An ordinal data type is
one that consists of an ORDERED set of things in which each member has
a single value only,
e.g. an integer data type.

Figure 2.2.16 shows an example of a for loop in Delphi/Pascal.
Figure 2.2.17 shows an example of a for loop in VB.NET.
For loops in C# and Java take a different form from Delphi/Pascal
and VB.NET. This form is as follows

for (initialiser; condition; iterator)

 body

FOR i ← 1 TO 5

 OUTPUT i

ENDFOR

Table 2.2.13 Definite iteration
with a for loop

FOR i ← 6 TO 5

 OUTPUT i

ENDFOR

Table 2.2.14 Definite
iteration with a for loop

Figure 2.2.16 Delphi/Pascal For loop example

Questions
What is the output of the following pseudo-code?

FOR i ← 1 TO 5

 j ← 2 * i

 OUTPUT j

ENDFOR

What is the output of the following pseudo-code?
FOR Ch ← 'A' TO 'C'

 OUTPUT Ch

ENDFOR

How many times is the pseudo-code loop executed in
Table 2.2.14?

16

17

18

Institution licence - St Martins School Essex

2.2 Programming concepts

61

Figure 2.2.18 shows a C# and Figure 2.2.19 a Java for
loop example.

The iterator i++ means increment i by 1. The
initialiser int i = 1 means create a loop control
variable i and give it an initial value of 1.

The condition i <= 5 evaluates to true if i is less
than or equal to 5; false if i is greater than 5.
Python’s for loop is different altogether from that of
Delphi/Pascal, VB.NET, C# and Java.

Figure 2.2.20 shows a simple for loop example in Python
3.5.
The range function call range(1,6) generates the
sequence of integers 1, 2, 3, 4, 5.
The last value generated is always one less then the upper bound value for the range, e.g. the last value is 5 if upper
bound is 6.

Step 1: The loop control variable i is given the initial value 1, the first value in the range.

Step 2: The hidden condition (i <= 5) is evaluated by comparing the value of i with 5.

If i is less than or equal to 5, the condition evaluates to true, and the statement print(i) is executed.

If i is greater than 5, the condition evaluates to false, and the loop is exited. The instruction immediately following the

body of the loop is then executed next, if one exists.

Step 3: The value of i is incremented by 1.

Step 4: The loop returns to the start of step 2 to evaluate the condition again.

Figure 2.2.17 VB.NET For loop example

iterator

Figure 2.2.19 Java for loop example

initialiser condition
Figure 2.2.18 C# for loop example

initialiser condition

iterator

Institution licence - St Martins School Essex

2 Programming

62

Indefinite (condition-controlled) iteration
The two cases of indefinite iteration to consider are repeat
and while loops. “For loops” do not support indefinite
iteration only definite iteration.
In Table 2.2.15 the value of i in both pseudo-code
examples is changed inside the loop in a way that cannot be
predicted because it is obtained from the user through the
input device, e.g. a keyboard, when Input i executes.

The value of i before the while loop executes is only
known at the time of execution when i ← USERINPUT
executes.

It is therefore not possible to determine in advance the number of iterations of the body of each loop.

The number of iterations depends on when the terminating condition i = 5 becomes true for the repeat loop and
when the terminating condition i <> 5 becomes false for the while loop.
If the terminating condition cannot ever be met for some reason then the execution remains within the repeat or the
while loop indefinitely. We then have a situation called an
infinite loop.
Table 2.2.16 shows how each loop could be written so that
the iteration is infinite.

Sometimes an infinite loop condition was not the intention
but the loop’s programmer has got it wrong. Exiting the
loop then becomes impossible by ordinary means because
the loop terminating condition can never be met.

Figure 2.2.20 Python 3.5 For loop example in Visual Studio
2015

Programming task
In a programming language with
which you are familiar, write a program
that codes the pseudo-code shown in
Question 16.

3

Key term
Indefinite iteration:
In indefinite iteration, the number
of iterations is not known before the
execution of the body of the loop starts.

Key term
Infinite loop:
If the terminating condition cannot ever
be met for some reason then the execution
remains within the repeat or the while
loop indefinitely. We then have a situation
called an infinite loop.

REPEAT

 i ← USERINPUT

 OUTPUT i

UNTIL i = 5

i ← USERINPUT

WHILE i <> 5

 i ← USERINPUT

 OUTPUT i

ENDWHILE

Table 2.2.15 Indefinite
iteration with repeat
and while loops

DO

 i ← USERINPUT

 OUTPUT i

WHILE i <> 5

REPEAT

 i ← USERINPUT

 OUTPUT i

UNTIL False

WHILE True

 i ← USERINPUT

 OUTPUT i

ENDWHILE

Table 2.2.16 Indefinite
iteration with repeat and
while loops showing a
situation called an infinite
loop

DO

 i ← USERINPUT

 OUTPUT i

WHILE True

Institution licence - St Martins School Essex

2.2 Programming concepts

63

Indefinite iteration in Pascal, Delphi, VB.NET, C#, Java, Python
Figure 2.2.21 shows two simple examples which illustrate how a repeat and a while loop can be constructed in
Pascal/Delphi. The while loop is the only
indefinite loop supported in Python. An
example is shown in Figure 2.2.22.

Figure 2.2.23 shows a simple example
which illustrates how a repeat loop can be
constructed in VB.NET. The syntax of the
construct is actually of the form Do Loop
Until <condition>. Figure 2.2.24 shows a
simple example which illustrates how a while
loop can be constructed in VB.NET using Do
While <condition> Loop.

In C#, the repeat loop construct is
implemented as a do while loop (Figure
2.2.25) and therefore the loop terminating
condition is expressed as (i != 5), the
inverse of what it would be if repeat until
could be used. “!=” means not equal to.
Figure 2.2.26 shows a simple example which illustrates how a while loop can be constructed in C#.

Questions

What is the output of the following pseudo-code when the input is 1, 2, 3, 4, 0?
(a) Sum ← 0 (b) Product ← 1

 REPEAT n ← USERINPUT

 n ← USERINPUT WHILE n > 0

 Sum ← Sum + n Product ← Product * n

 UNTIL n = 0 n ← USERINPUT

 OUTPUT Sum ENDWHILE

 OUTPUT n

What is the output of the following pseudo-code?
(a) j ← 4 (b) j ← 4 (c) j ← 4 (d) j ← 4

REPEAT REPEAT WHILE j < 5 DO

 j ← j - 1 j ← j + 1 j ← j + 1 j ← j + 1

 OUTPUT j OUTPUT j OUTPUT j OUTPUT j

UNTIL j < 1 UNTIL j > 6 ENDWHILE WHILE j < 6

What is the essential difference between definite and indefinite iteration?
What is the essential difference between a repeat until loop and a while loop?
What is meant by an infinite loop?
Write a loop in pseudo-code which demonstrates an infinite loop.

20

21
22

23
24

19

Figure 2.2.21 Repeat and while loops in Delphi
<> means not equal to in Pascal/Delphi

Institution licence - St Martins School Essex

2 Programming

64

Figure 2.2.23 Repeat loop in VB.NET
Figure 2.2.22 while loop in Python 3.4

!= means not equal
to in Python

Figure 2.2.24 While loop in VB.NET

Figure 2.2.25 Repeat loop in C# is
implemented as a do while loop Figure 2.2.26 while loop in C#

Institution licence - St Martins School Essex

2.2 Programming concepts

65

In Java, the repeat loop construct is implemented as a do while loop (Figure 2.2.27) and therefore the loop
terminating condition is expressed as (i != 5), the inverse of what it would be if repeat until could be used.
Figure 2.2.28 shows a simple example which illustrates how a while loop can be constructed in Java.

Nested selection statements
The pseudo-code in Table 2.2.17 contains three occurrences of selection, one
marked in black, one in red and one in blue. The red-marked selection and the
blue-marked selection statements are each nested inside the black-marked selection
statement. This pseudo-code finds the largest of three numbers. The value of the
first number is stored in variable No1. The value of the second number is stored
in variable No2 and the third in No3.

The value of the largest of the three numbers is stored in variable Largest.
If No1 stores the value 6, No2 the value 3 and No3 the value 8, the result of the
comparison IF No1 > No2 is true because 6 is greater than 3.
The THEN block of the black-coloured selection is executed next.
This block contains another IF THEN ELSE statement, the one marked in red.
The result of the comparison IF No1 > No3 is false because 6 is less than 8.
The ELSE coloured in red is executed next and the value stored in variable No3
is assigned to variable Largest.

Figure 2.2.27 Repeat loop in Java is
implemented as a Do While loop

Figure 2.2.28 While loop in Java

Programming task
In a programming language with which you are familiar:
(a) Write programs that code the pseudo-code shown in Question 19(a) and 19(b).
(b) Write programs that code the pseudo-code shown in Question 20(a), 20(b), 20(c) and 20(d).

4

Table 2.2.17 Pseudo-code to find
the largest of three numbers

IF No1 > No2 THEN

 IF No1 > No3 THEN

 Largest ← No1

 ELSE

 Largest ← No3

 ENDIF

ELSE

 IF No2 > No3 THEN

 Largest ← No2

 ELSE

 Largest ← No3

 ENDIF

ENDIF

Institution licence - St Martins School Essex

2 Programming

66

Nested iteration statements
We may place a for loop inside a for loop as
shown in Table 2.2.18 The inner for loop
executes for each value of the loop control
variable i of the outer for loop. The trace table,
Table 2.2.19, shows the output and the values
of i and j, the outer loop and inner loop
control variables, respectively, for the first few
values of the trace. While and Repeat loops can
also be nested.

Programming tasks
In a programming language with which you are familiar,
(a) Write a program that codes the pseudo-code shown in Question 26(a).
(b) Write a program that codes the pseudo-code shown in Question 26(b).

6

Questions
What is the output of the following pseudo-code?
(a)FOR i ← 1 TO 2 (b) For i ← 1 TO 3

 FOR j ← 1 TO 3 For j ← 1 TO i
 OUTPUT j OUTPUT j
 ENDFOR ENDFOR
ENDFOR ENDFOR

What is the output of the following pseudo-code?
(a) FOR Ch1 ← 'A' TO 'C' (b) FOR Ch1 ← 'a' TO 'c'
 For Ch2 ← 'A' TO Ch1 FOR Ch2 ← 'a' TO 'c'
 OUTPUT Ch2 FOR Ch3 ← 'a' TO 'c'
 ENDFOR OUTPUT Ch1, Ch2, Ch3
 ENDFOR ENDFOR
 ENDFOR
 ENDFOR

26

27

Programming task
Write a program which defines a function that finds the largest of three integers, x, y, and z. The program
should display the largest.

5

Questions
Using the pseudo-code in Table 2.2.17
(a) If No1 stores the value 6, No2 the value 7 and No3 the value 5 which selection statements are executed?
 Explain your answer.
(b) If No1 stores the value 6, No2 the value 6 and No3 the value 5 which selection statements are executed?
 Explain your answer.

25

FOR i ← 1 TO 5

 FOR j ← 1 TO 3

 OUTPUT i

 ENDFOR

ENDFOR

Table 2.2.18 Nested for loop

i j Output
1 1 1
1 2 1
1 3 1
2 1 2
2 2 2
2 3 2

Table 2.2.19 Trace table

Institution licence - St Martins School Essex

2.2 Programming concepts

67

Using meaningful identifier names
The names that have been used for variables, constants, subroutines such as RunningTotal,
NO_OF_DAYS_IN_WEEK, drawsquare, Cube are all examples of identifiers. These identifiers describe what
they represent, e.g. RunningTotal. When an identifier is descriptive of what it represents or of its purpose,
we say that it has a meaningful name.

The following points are relevant to why programmers should use meaningful identifier names:

• Meaningful identifier names make it easier for the programmer to understand the source code because
meaningfully-named identifiers describe what they represent or do

• Programmers spend far longer reading their source code than writing it so it is important that the source
code is as descriptive of what it does as possible

• Programmers spend a lot of time reading other programmers’ source code as well as their own and so it is
important that the source code is as descriptive of what it does as possible

• Program source code needs to make sense when it is read, i.e. it should be possible to understand what the
source code has been written to do, otherwise its intention will be unclear

• A programmer may wish/has to use source code that someone else has written. To do this successfully they
need at least to understand the source code

• A programmer may be tasked to debug a program because it contains runtime/logical errors, e.g. it doesn’t
do what it is expected to do. The programmer will need to understand the source code in order to debug it

• A programmer may also be tasked to modify a program because what it is required to do has changed. The
programmer will need to understand the source code to change it successfully.

Table 2.2.21 shows pseudo-code which sums the first 10 natural numbers.
Comments have been added
to the pseudo-code which
describe the purpose of
each statement because the
identifier names alone are
not sufficient to make the
purpose clear (this may be an
oversimplified example but it
is done to make a point).

Questions
Write the following nested for loop as a single for loop

Complete the trace table, Table 2.2.20, by hand tracing
the following pseudo-code

FOR i ← 0 TO 1
 FOR j ← 0 TO 2
 OUTPUT j
 ENDFOR

ENDFOR

28

29

i j Output
0 0

Table 2.2.20 Trace table

x ← 0 // Initialise running total

y ← 1 // Initialise natural number

REPEAT

 x ← x + y // add natural number to running total

 y ← y + 1 // Increment natural number

UNTIL y = 11 // Terminate loop when natural number is 11

Table 2.2.21 Pseudo-code to sum the first 10 natural numbers

FOR i ← 1 TO 4
 FOR j ← 3 TO 5
 OUTPUT('*')
 ENDFOR
ENDFOR

Institution licence - St Martins School Essex

2 Programming

68

Table 2.2.22 shows the pseudo-code rewritten with meaningful/self-describing identifier names.

The pseudo-code comments in Table 2.2.21 use 148 characters whilst the meaningful/self-describing identifiers in
the pseudo-code in Table 2.2.22 use 61 characters.
We say that the pseudo-code in Table 2.2.22 is self-documenting and because of this comments are largely
superfluous.

RunningTotal ← 0

NaturalNo ← 1

REPEAT

 RunningTotal ← RunningTotal + NaturalNo

 NaturalNo ← NaturalNo + 1

UNTIL NaturalNo = 11

Table 2.2.22 Pseudo-code to sum the first 10 natural numbers

Key term
Meaningful identifier name:
When an identifier is descriptive
of what it represents or of its
purpose, we say that it has a
meaningful name.

Questions
Why is it important to use meaningful identifier names? 30

Programming tasks
In a programming language with which you are familiar,
(a) Write a program to print a "4 times table" in the form

1 x 4 = 4
2 x 4 = 8
3 x 4 = 12
etc.

(b) Write a program to read in any integer, represented by the letter n say, and print an 'n times table'.

Write a program to print all the multiples of 3, starting at 3 and finishing at 90.

In a programming language with which you are familiar,
(a) Write a program to input 6 numbers and display how many of them are zero.
(b) Write a program to input 10 numbers and print the largest. (Hint: assume the first number is the largest,
store it in Largest, compare each new number with Largest, store new number in Largest if new number is
larger. Alternatively, set Largest to 0 at start of program, then compare each new number with Largest as
before).

Write a program to determine if a given year is a leap year. A leap year is a year which is exactly divisible by 4
and not a century year unless the century year is exactly divisible by 400. (Hint: (Year MOD 4) = 0 tests for
exact division by 4).
Write a program that will enable a user to input the day of the week on which a month begins and the
number of days in the month. The program should produce as output a calendar for the given month in the
format shown below

Sun Mon Tues Wed Thurs Fri Sat
 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

The day on which the month begins should be entered as an integer where 1 corresponds to Sunday, 2 to
Monday and so on.

7

8

9

10

11

Institution licence - St Martins School Essex

2.2 Programming concepts

69

Sequence, iteration and selection control constructs
The three combining principles (sequence, iteration/repetition and selection/choice) are basic to all high-level
imperative programming languages.

These are the three basic control constructs necessary to build any program.

It can be shown that these three constructs are also sufficient to implement the control structure of any algorithm.

In this chapter you have covered:

 ■ Using the following statement types as well as understanding and knowing how they can be combined in
programs
• variable declaration

• constant declaration

• assignment

• iteration

• selection

• subroutine (procedure/function)

 ■ Writing programs using the statement types above

 ■ Interpreting and writing algorithms that make use of the statement types above

 ■ Using definite (count controlled) and indefinite iteration (condition controlled), including indefinite iteration
with the condition(s) at the start or the end of the iterative structure

 ■ Using nested selection and nested iteration structures

 ■ Using meaningful identifier names and why it is important to use them

 ■ The three combining principles (sequence, iteration/repetition and selection/choice) which are

• basic to all high-level imperative programming languages

• the three necessary control constructs necessary to build any program

• the three constructs sufficient to implement the control structure of any algorithm.

Institution licence - St Martins School Essex

70

Learning objectives:
 ■ Be familiar with and be able
to use:

• addition

• subtraction

• multiplication

• real division

• integer division,
including remainders.

 2 Fundamentals of programming

2 Programming
 ■ 2.3 Arithmetic operations in a programming language

Addition/Subtraction/Multiplication
Arithmetic expressions

5 + 2

is an example of an arithmetic expression.

This expression has two operands and one operator as shown in Figure 2.3.1.

Table 2.3.1 shows the arithmetic operators for the arithmetic operations
addition, subtraction, multiplication and division in the programming
languages C#, Java, Python, Pascal/Delphi and VB.NET.

Care needs to be taken with division because two kinds of division exist:

• Real division

• Integer division.

Real division
In real division, the quotient is a number with a fractional part, e.g. if 3 is
divided by 2 the quotient is 1.5 in real division

3 / 2 = 1.5 (Real division quotient)

whereas in integer division the quotient is integer, e.g.

3 / 2 = 1 (Integer quotient)

5 + 2

First
operand

Operator

Second
operand

Figure 2.3.1 Arithmetic expression

Arithmetic Operator
C# Java Python Pascal/

Delphi
VB.NET Operation Example

+ + + + + Addition
3 + 5 is 8

3.0 + 2.0 is 5.0

- - - - - Subtraction
6 – 3 is 3

6.0 – 3.0 is 3.0

* * * * * Multiplication
3 * 2 is 6

3.0 * 2.0 is 6.0
/ / / / / Division 5.0 / 2.0 is 2.5

Table 2.3.1 Arithmetic operations in C#, Java, Python, Pascal/Delphi and VB.NET

Information
This textbook covers Python
(version 3), C# and VB.NET the
programming languages supported
by AQA for examinations from
2022 onwards. In addition, it also
covers programming languages
Java and Pascal/Delphi.

Institution licence - St Martins School Essex

 2 Fundamentals of programming

71

Programming languages differ in how they support the operations of real division and integer division. Table 2.3.3
shows examples of both real and integer division in C#, Java, Python 2.x, Python 3.x, Pascal/Delphi and VB.NET.

Integer division
You may recall that at primary school you did integer division e.g. 10 divided by 3 is 3 remainder 1.
The operation of integer division computes the integral part of the result
of dividing the first operand by the second. The integral part is the whole
number of times the second operand (the divisor) goes into the first
operand (the dividend).
Figure 2.3.2 shows a length of rope of integer length L round a capstan of
integer circumference C . The number of times that the rope can be wound
on the circumference of the capstan is L DIV C where DIV is the integer
division operator applied to an integer dividend and an integer divisor.

Language Example Output

C# Console.WriteLine("Integer quotient: {0}", 3/2);
Console.WriteLine("Real quotient: {0}", 3.0/2);

Integer quotient: 1

Real quotient: 1.5

Java
System.out.println("Integer quotient: " + 3/2);

System.out.println("Real quotient: " + 3.0/2);

Integer quotient: 1

Real quotient: 1.5

Python 3.x
print("Integer quotient: ", 3//2)

print("Real quotient: ", 3/2)

Integer quotient: 1

Real quotient: 1.5

Pascal/Delphi
Writeln('Integer Quotient: ', 3 Div 2);

Writeln('Real Quotient: ', 3/2);

Writeln('Real Quotient: ', 3.0/2);

Integer Quotient: 1

Real Quotient: 1.5

Real Quotient: 1.5

VB.NET
Console.WriteLine("Integer Quotient: {0}", 3\2)

Console.WriteLine("Real Quotient: {0}", 3/2)

Integer Quotient: 1

Real Quotient: 1.5

Table 2.3.3 Comparison of real division and integer division in C#, Java, Python, Pascal/Delphi and VB.NET

Questions
Express the following mathematical formulae in programming language form using the arithmetic
operators from Table 2.3.1.

(a) b2 - 4ac (b) (c)

1

 1

1 + x2

1

u

1

v
+

Extension programming task
Table 2.3.2 shows two simultaneous linear equations in two variables x and y.
The coefficients are a, b, m, n. For example, if the two equations are
 then a = 5, b = 4, c = 22, m = 3, n = 8 and d = 30.
To solve for x and y we can use the following

Write a program to solve for x and y given the coefficients a, b, m, n of two simultaneous linear equations.
Test your program with a = 5, b = 4, c = 22, m = 3, n = 8 and d = 30.

1
a.x + b.y = c
m.x + n.y = d

Table 2.3.2

(b∗d - n∗c)
(m∗b - a∗n)

x = (a∗d - m∗c)
(a∗n - m∗b)

y =

5x + 4y = 22 and 3x + 8y = 30

Figure 2.3.2 Rope wound round a
capstan

Remainder

Institution licence - St Martins School Essex

2.3 Arithmetic operations in a programming language

72

The short length of rope left over is called the remainder because it is not long enough to fit the circumference. The
remainder is given by L MOD C and is integral (a whole number).

Table 2.3.4 shows the integer division and integer remainder operators being used in C#, Java, Python, Pascal/
Delphi and VB.NET.

Programming task
Write a program to determine if a given year is a leap year.
A leap year is a year which is exactly divisible by 4 and not a century year unless the century year is exactly
divisible by 400.

Write a program to produce a display of the time of day in the form
 hours : mins : secs

given the time in seconds that have elapsed since 12:00 midnight.

Write a program to display the number of hundreds, tens and units of a 3-digit integer number, N.

Write a program to display the digits, one per line, of an integer, N.

2

3

4

5

Language Example Output

C#
Console.WriteLine("Integer quotient: {0}", 5 / 2);
Console.WriteLine("Integer remainder: {0}", 5 % 2);

Integer quotient: 2
Integer remainder: 1

Java
System.out.println("Integer quotient: " + 5 / 2);
System.out.println("Integer remainder: " + 5 % 2);

Integer quotient: 2
Integer remainder: 1

Python 3.x
print("Integer quotient: ", 5 // 2)

print("Integer remainder: ", 5 % 2)

Integer quotient: 2
Integer remainder: 1

Pascal/Delphi
Writeln('Integer quotient: ', 5 Div 2);
Writeln('Integer remainder: ', 5 Mod 2);

Integer quotient: 2
Integer remainder: 1

VB.NET
Console.WriteLine("Integer quotient: {0}", 5 \ 2)
Console.WriteLine("Integer remainder: {0}", 5 Mod 2)

Integer quotient: 2
Integer remainder: 1

Table 2.3.4 Integer division in C#, Java, Python, Pascal/Delphi and VB.NET

Questions
(a) How many times can a cotton thread of length 1655 cm be wound around a cotton reel of
 circumference 13 cm?
(b) How much cotton thread is left over?

Convert 4589 minutes into hours and minutes.

Explain how DIV and MOD can be used to obtain the
number of hundreds, tens and units of a 3-digit integer, N.
Dividing an integer x by an integer y using integer division,
we obtain quotient q and the remainder r.
The relationship between x, y, q and r is expressed in the
following formula x = y ∗ q + r

e.g. dividend x = 5, divisor y = 2, quotient q = 2,
remainder r = 1, applying the formula 5 = 2 * 2 + 1.

Complete Table 2.3.5.

2

3

Dividend
x

Divisor
y

Quotient
q

Remainder
r

5 2 2 1
6 3 2 0
25 4 6 1
36 6
121 7
23 3
1 3
5 10

Table 2.3.5

4

5

Institution licence - St Martins School Essex

 2 Fundamentals of programming

73

In this chapter you have covered:

 ■ Using in a programming language and becoming familiar with:

• addition

• subtraction

• multiplication

• real division

• integer division, including remainders.

Programming task
Write a program to work out the day of the week on which a given date falls using the formula shown

below

DayCode = ((13 * Month – 1) DIV 5 + Decade DIV 4 + Century DIV 4 + Decade + Day – 2 * Century) Mod 7

This calculates the day of the week on which any date after 1 January 1583 will fall or has fallen.

In this formula, the year is considered as consisting of two parts neither of which have their usual meaning:
• a century represented by the first two digits of its integer representation, e.g. 20 in 2010, and
• a decade represented by the last two digits, e.g. 10 in 2010.

The date for which the corresponding day of the week is required must be coded in the following way:

• The day of the month an integer between 1 and 31 inclusive
• The year is an integer, e.g. 1996 represents the year 1996.
• The month must be coded as an integer as follows:

 � March is coded 1, April as 2 and so on until December, which is coded as 10
 � January and February are coded as 11 and 12 respectively of the previous year. So, for example, 15

February 1996 would be represented as day 15, month 12 of year 1995.

The result of applying this formula is an integer in the range 0 – 6 inclusive.
The integer 0 represents Sunday, 1 represents Monday and so on.
Your program should use the days of the week in its output, i.e. Sunday, Monday, etc.

6

Questions
The following pseudo-code calculates the quotient q and
remainder r when an integer x is divided by an integer y
using integer division

r ← x

q ← 0

WHILE r ≥ y

 r ← r - y
 q ← q + 1
 ENDWHILE

Complete Table 2.3.6 by tracing this pseudo-code by hand.

6 Iteration x y r q r ≥ y
0 7 2 7 0 True

Table 2.3.6 Trace table

Institution licence - St Martins School Essex

74

Learning objectives:
 ■ Be familiar with and be able
to use:

• equal to

• not equal to

• less than

• greater than

• less than or equal to

• greater than or equal to.

 2 Fundamentals of programming

2 Programming
 ■ 2.4 Relational operators in a programming language

Relational operators
Expressions involving the relational operators shown in Table 2.4.1 produce
Boolean results. For example,

2 < 3 True
5 > 6 False

Therefore, such Boolean expressions may be assigned to any Boolean variable,
e.g. FlagIsTrue.

The following pseudo-code outputs the value True because 2 < 3 evaluates to
True :

FlagIsTrue ← 2 < 3

OUTPUT FlagIsTrue

The following pseudo-code outputs the value False because 5 > 6 evaluates to
False:

FlagIsTrue ← 5 > 6

OUTPUT FlagIsTrue

Relational operators are more commonly used in selection statements and
loops.
For example,

IF x ≥ 6 THEN
 OUTPUT "x is greater than or equal to 6"
ELSE
 OUTPUT "x is not greater than or equal to 6"
ENDIF

WHILE x < 7
 x ← x + 2
 OUTPUT x
ENDWHILE

Operator
C# Java Python Pascal/

Delphi
VB.NET AQA Meaning Example

(Pascal)
Outcome

== == == = = = Equal To 6 = 6 True
< < < < < < Less Than 4 < 7 True

<= <= <= <= <= ≤
Less Than Or

Equal To
7 <= 3 False

> > > > > > Greater Than 34 > 12 True

>= >= >= >= >= ≥
Greater Than Or

Equal To
23 >= 23 True

!= != != <> <> ≠ Not Equal To 6 <> 6 False

Table 2.4.1 Relational operators in C#, Java, Python, Pascal/Delphi, VB.NET and in AQA assessments

Information

In assessment material, AQA will

use the following symbols:

=, ≠, <, >, ≤, ≥

Information
This textbook covers Python
(version 3), C# and VB.NET, the
programming languages supported
by AQA for examinations from
2022 onwards. In addition, it also
covers programming languages
Java and Pascal/Delphi.

Institution licence - St Martins School Essex

 2 Fundamentals of programming

75

In this chapter you have covered:

 ■ Using and becoming familiar with:

• equal to

• not equal to

• less than

• greater than

• less than or equal to

• greater than or equal to.

Questions
What is the outcome of evaluating each of the following expressions if x stores the value 5 and y the
value 10?
(a) x = y (b) 2*x < y (c) 2*x ≤ y (d) x > y (e) 2*x ≥ y (f) x ≠ y
(g) 10*x ≠ 5*y

What value is output by the following pseudo-code if Flag is a Boolean variable?
Flag ← 6 > 8

OUTPUT Flag
What message is output by the following pseudo-code?

IF 6 ≠ 6 THEN

 OUTPUT "Have a nice morning!"

ELSE

 OUTPUT "Have a nice evening!"

ENDIF

1

2

3

Institution licence - St Martins School Essex

76

Learning objectives:
 ■ Be familiar with and be able
to use:

• NOT

• AND

• OR.

 2 Fundamentals of programming

2 Programming
 ■ 2.5 Boolean operations in a programming language

Boolean operators
Operators which act on Boolean operands or Boolean values and evaluate or
return a Boolean value are called Boolean operators.

Boolean operands or values are those that are either True or False.

Most programming languages support the Boolean operators NOT, AND, and
OR so that a programming statement such as the following involving a Boolean
operation can be written

IF (x > 5) AND (y < 3) THEN Output "A message"

Boolean operators are used to perform the Boolean operations

• x AND y

• x OR y

• NOT x

where x and y are Boolean variables or Boolean expressions.

For example if operand x is True and operand y is False then

• x AND y evaluates to False

• x OR y evaluates to True

• NOT x evaluates to False

Table 2.5.1 shows the symbols used for these Boolean operators in the
programming languages, C#, Java, Python, Pascal/Delphi and VB.NET and
their meaning. AQA's pseudo-code uses the same symbols as Pascal/Delphi.

Boolean Operator
C# Java Python Pascal/

Delphi
VB.NET Meaning Example

(Pascal)
Outcome

! ! not NOT Not Evaluates to true, if operand false;
Evaluates to false if operand is true

NOT True False

&& & and AND And Evaluates to true if both operands
are true otherwise evaluates to false

True AND

True
True

|| | or OR Or Evaluates to true if at least one
operand is true otherwise false

True OR

False
True

Table 2.5.1 Boolean or Logical operators operators in C#, Java, Python, Pascal/Delphi and VB.NET

Key term
Boolean operators:
Operators which act on Boolean

operands or Boolean values and

evaluate or return a Boolean value

are called Boolean operators.

Most programming languages

support the Boolean operators

NOT, AND, and OR.

Information
This textbook covers Python (version 3), C# and VB.NET, the
programming languages supported by AQA for examinations
from 2022 onwards. In addition, it also covers programming
languages Java and Pascal/Delphi.

Institution licence - St Martins School Essex

 2 Fundamentals of programming

77

Operator precedence

Operator precedence refers to the order in which operators
are applied to operands in an expression.

The NOT operator has the highest precedence, followed by
the AND operator, then the OR operator.

Table 2.5.2 summarises operator precedence.

For example, in the following logical expression NOT y is
evaluated first because NOT has a higher precedence than AND.

x AND NOT y

If Boolean variable y stores the value False,

NOT False evaluates to True because y is False.

Substituting True for NOT y in the expression
x AND NOT y

we obtain x AND True

If Boolean variable x stores the value True, we obtain

True AND True

which evaluates to True.

If the expression is NOT (x AND y)

then x AND y is evaluated first

The result of evaluating x AND y is False if x is False and y is True.

We now have NOT (False)

which evaluates to True.

Now consider the logical expression with Boolean variables, x, y and z shown below

x AND y OR z

The operator precedence of AND is higher than OR.

If x and y store the value False and z the value True the expression evaluates in the following order

1. x AND y evaluates to False

2. False OR z evaluates to True

To change the order of evaluation we need to bracket the term y OR z in the expression x AND y OR z as follows
x AND (y OR z)

If x and y store the value False and z the value True the expression evaluates in the following order

1. y OR z evaluates to True

2. x AND True evaluates to False

Operator precedence Precedence

NOT Highest (evaluated first)

AND

OR Lowest (evaluated last)

Table 2.5.2 Operator precedence of Boolean operators

Institution licence - St Martins School Essex

2.5 Boolean operations in a programming language

78

In this chapter you have covered:

 ■ Becoming familiar with and using:

• NOT

• AND

• OR.

Questions
What is the outcome of evaluating each of the following expressions if x stores the value True
and y the value False
(a) NOT x (b) x AND y (c) x AND NOT y (d) x OR y (e) NOT x OR y?

What is the outcome of evaluating each of the following expressions if x stores the value True, y the
value False and z the value False

(a) x AND y AND z (b) x AND y OR z (c) x OR y AND z
(d) (x OR y) AND z (e) x AND NOT y AND z (f) x AND NOT (y AND z)?

Integer variable s stores the value 9 and integer variable t stores the value 8.
What is the output of the following pseudo-code?

IF (s > 3) AND (t < 6) THEN

 Output "Have a nice morning!"

ELSE

 Output "Have a nice evening!"

ENDIF

1

2

3

Institution licence - St Martins School Essex

79

Learning objectives:
 ■ Understand the concept of
data structures
 ■ Use arrays (or equivalent)
in the design of solutions to
simple problems
 ■ Use records (or equivalent)
in the design of solutions to
simple problems.

 2 Programming

2 Programming
 ■ 2.6 Data structures

The concept of data structures
Learning how to program is a process of developing the ability to model
problems in such a way that a computer can solve them.

Array data structure
Suppose we needed to solve a problem which involved queueing. Figure 2.6.1
shows an abstraction of a queue of people.

To represent this model in a computer programming language we use a data
structure.
A data structure is a named collection of variables, possibly of different data
types, which are connected in various ways. In the case of the queue, the person
at the front of the queue is connected by relative position to the person next in
the queue, this person is connected by relative position to the next and so on.

The cell is the basic building block of data structures. We can picture a cell as
a box that is capable of holding a value drawn from some basic or composite
data type. Figure 2.6.2
shows a collection
(aggregation) of cells
representing a queue.
This data structure is
given a name, Queue,
that refers to the
collection of cells.

Each cell of Queue is
designed to store a
value of an integer data
type.

The simplest data
structure available in many programming languages is the array which is a
sequence of cells of a given type.

Record data structure
Another common data structure in programming languages is the record data
structure - Figure 2.6.3. A record is a cell that is made up of a collection of
other cells, called fields, that may be of different data types. The record data
structure can model a customer record from the real world and store values in
its fields such as customer name, address, age, salary, job position.

FrontQueue data
structure

Rear

12345

23456
34567

45678

Figure 2.6.2 Queue data structure consisting of an
aggregation of cells storing integers

Figure 2.6.1 Queue Abstract Data Type

Record

 Surname : String

 Forename : String

 AddressLine1 : String

 AddressLine2 : String

 City: String

 Postcode : String

 Country : String

 Age : Real

 Salary: Integer

 JobPosition : String

End

Record data type

Field

Figure 2.6.3 Record data structure

Key concept
Data structure:
A data structure is a named
collection (aggregation) of
variables, possibly of different
data types, which are connected
in various ways.
The collection consists of cells
representing some abstract
data type, e.g. a queue which
models a real world entity, e.g. a
supermarket queue.
The cell is the basic building
block of data structures.

Institution licence - St Martins School Essex

 2 Programming

80

One-dimensional array
The problem
Suppose you are tasked with writing a computer program to keep a set of one hundred
temperature readings in memory so that calculations may be performed on these readings
in a uniform manner. A sample of the first 8 readings is shown in Figure 2.6.4.

We could store the first of the readings in a variable, Temperature1, the
second in a variable, Temperature2, and so on as shown in Figure 2.6.5.
The data type chosen for Temperature1 would be one that allows storage
of a value possessing a fractional part, e.g. float. The same data type would be
chosen for Temperature2, and each of the other 98 variables.
Using 100 separate variables, each of which is only able to store a single value, is
not ideal.
The solution
What is needed is a single variable which can store many values.
For this we use an array variable, Temperature, as shown in Figure 2.6.6.

1. An array is a data structure which is capable of storing many values, e.g.
100 temperature readings: 20.5, 22.7, ..., 17.6

2. An array is also a single entity, referred to by a single name,
e.g. Temperature.

3. The values stored in an array are all of the same data type, e.g. float.

4. The stored values are arranged in an order so that there is a first, a
second, and so on.

Separate variables
In the separate variable approach, to extract, say, the value of the seventh
temperature reading from among 100 separate variables, we need the name
of the corresponding variable. We can construct this name by combining
the name Temperature with the numeric name 7 to produce the name,
Temperature7.

We then use this name to refer to the variable which contains the value of the seventh reading, i.e. 21.4 as shown in
Figure 2.6.5. Perhaps we might want to output the value of this variable to the console.
Pseudo-code that does this is as follows

OUTPUT Temperature7

Questions
What is meant by a data structure?1

20.5 22.7 24.3 26.8 25.1 23.9 21.4 20.0

Figure 2.6.4 Sample of temperature readings

Variable Value
Temperature1 20.5
Temperature2 22.7
Temperature3 24.3
Temperature4 26.8
Temperature5 25.1
Temperature6 23.9
Temperature7 21.4
Temperature8 20.0

Figure 2.6.5 Variables
for first 8 readings

Variable Value
Temperature 20.5

22.7
24.3
26.8
25.1
23.9
21.4
20.0

17.6

Figure 2.6.6 Array
variable with storage
for 100 temperature

readings

Institution licence - St Martins School Essex

2.6 Data structures

81

Array index
Using an array to store 100 temperature readings, we retain the use of numeric naming 1, 2, 3, 4,, 100 and view
the array as consisting of 100 elements with each element storing the value of a temperature reading.

To extract, say, the value of the seventh temperature reading, we construct a name by combining the name of the
array, Temperature, with the numeric name 7 as follows Temperature[7] as shown in Figure 2.6.7.

We then use this name to refer to the element of the array which contains the seventh reading, i.e. 21.4 (see Figure
2.6.7).

Perhaps we might want to output the value of this variable to the
console. Pseudo-code that does this is as follows

OUTPUT Temperature[7]

Pseudo-code to output the first, second and third values of array
Temperature is as follows

OUTPUT Temperature[1]

OUTPUT Temperature[2]

OUTPUT Temperature[3]

The name that we use inside the square brackets is called the array
index, e.g. 3 in [3].

Pseudo-code to output all 100 values is as follows

FOR i ← 1 TO 100

 OUTPUT Temperature[i]

ENDFOR

Here the array index is a loop control variable i which ranges from 1
to 100.

We are not restricted to starting array indexing at 1. We can index
from 0. In fact, many programming languages only offer array
indexing from 0. Pascal and Delphi are exceptions. In fact, Pascal and
Delphi allow indexing from any starting value of ordinal data type.

Variable Value

Temperature [1] 20.5
[2] 22.7
[3] 24.3
[4] 26.8
[5] 25.1
[6] 23.9
[7] 21.4
[8] 20.0

[100] 17.6

Figure 2.6.7 Use of an index in array
variable Temperature

Index

21.4
20.5
22.7
24.3

Console

Information
Square bracket notation:
AQA’s pseudo-code uses square

bracket notation [] to access

values in an array as do many

programming languages.

Questions
A program is required to keep 10000 temperature readings in memory
and to reference all the items in a uniform manner.
Explain why it would be preferable to use a one-dimensional array to
store the value of each reading instead of 10000 separate variables.

A one-dimensional array Height consists of 10 elements. Array
indexing starts at 0 and ends at 9. The array stores the heights of 10
people. Write pseudo-code using a for loop to output all 10 heights in
the same order that they are stored in the array.

2

3

Information
In assessment material, AQA will

use array indexing which starts

from 0 unless specifically stated

otherwise.

Institution licence - St Martins School Essex

 2 Programming

82

Basic operations that access arrays
The two basic operations that access the one-dimensional array Temperature are

• Extraction: this is achieved by evaluating Temperature[i] to identify a particular stored value in the
array Temperature, e.g. if i = 5, then Temperature[i] evaluates to 25.1 - see Figure 2.6.7.

• Storing: this is achieved by executing the assignment Temperature[i] ← x which results in a copy
of the value stored in x being assigned to the array Temperature at the location within this array
identified by index i. Variable x holds the temperature reading to be stored in the array Temperature,
e.g. if i = 5 and x = 25.1, then Temperature[5] ← 25.1 results in 25.1 being stored in the array
location with index 5.

Addresses
Numbers as names are also called addresses. We are familiar with numbers being assigned to houses: “Such and
such lives at no 42”.

We can therefore think of an array index as an address. Using an address also implies a location. For example,
Temperature[5]is a location with address 5 within array Temperature.

Figure 2.6.8 shows storage bays for Russian doll objects. We can think of this structure as an array used for storing
objects. Each bay within this array is a location. The structure is divided into cells, one above another. So we can
also use the synonym cell for location.

Each location/cell is assigned an address. In this numbering scheme we
have chosen to start the numbering from 0 and to label the lowermost cell
0. We could have started the numbering from 1 and we could have chosen
the uppermost cell as the first cell. The choice is arbitrary. All that we need
to ensure is that the numbering is ordered, i.e. 0, 1, 2 , 3 or 1, 2, 3, 4, and
each cell is assigned, in order, a unique number drawn from the range of
numbers whether 0, 1, 2, 3 is chosen or 1, 2, 3, 4.

0

1

2

3

Array
location
or cell

Index
or address

The first storage
bay within
storage structure

Figure 2.6.8 Location/cell view
of an array with array index as a
location address

Questions
Explain why we can think of an array index as an address.4

The first six prime numbers are stored in an array primes.
We can represent this as follows: [2,3,5,7,11,13]
If array indexing starts from 0 what is stored in each of the
following locations of array prime?
(a) (i) primes[1] (ii) primes[3] (iii) primes[5]

(b) If function LEN(anArray) returns the number of elements in
an array, what is returned by the function call LEN(primes)?

5

Institution licence - St Martins School Essex

2.6 Data structures

83

Creating a one-dimensional array
Table 2.6.2 shows examples of how integer and real/floating point one-
dimensional arrays may be created in C#, Java, Pascal, Delphi, Python1 and
VB.NET. For Python two approaches are used. The first uses Python lists and
the second arrays from the NumPy library.
Python lacks native support for creating an array data structure within the
language. The closest that Python gets to a native data structure that can be
used like a one-dimensional array is a list (a list is actually a dynamic array). A
list is just a sequence of values (think of a shopping list).

However, it is possible to create an array in Python with the NumPy package if
this package is loaded with the command import numpy.

NumPy is short for Numeric Python.

With numpy installed we can use the array function to create an array.

1 Spyder 4.1.4 the Scientific PYthon Development EnviRonment and Python 3.8

Questions
The following algorithm determines the average temperature of a set of temperature readings.

The temperature readings are stored in an array temperature as follows
[20.5, 22.7, 24.3, 26.8, 25.1, 23.9, 21.4]

Note: Array indexing starts at 1.
total ← 0.0

index ← 0

REPEAT

 index ← index + 1

 total ← total + temperature[index]

UNTIL index = LEN(temperature)

average ← total/LEN(temperature)

OUTPUT average

Complete the trace table Table 2.6.1 for this algorithm and array temperature.

Array indexing starts at 0 for an array Row with 10 elements.
(a) What is the index of the last element?
(b)Write pseudo-code to output the value stored in the first cell of this array.

(a) Explain why the following pseudo-code will output the 10 values stored in the array Row.
i ← 0

WHILE i < 10

 OUTPUT Row[i]

 i ← i + 1

ENDWHILE

(b) What is the value stored in i when the loop terminates?

Rewrite the While loop pseudo-code in Question 8 so that it uses a Repeat loop with the terminating
condition at the end of the loop.

6

7

8

9

index total
0 0.0

Table 2.6.1

Information

NumPy:
NumPy is the fundamental package

for scientific computing with Python.

Anaconda:
Installing some of the larger Python

libraries, particularly those such as

NumPy which depend on complex

low-level C and Fortran packages, is

made easy with Anaconda. Anaconda

will do all the dependency checking

and binary installs required.

Anaconda is free to download and

install from

https://www.anaconda.com/products/

individual

Institution licence - St Martins School Essex

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

 2 Programming

84

In Table 2.6.2, the Python list [0, 1, 2, 3] is supplied as argument to the function array to create array x as
follows

x = np.array([0,1, 2, 3])

In Table 2.6.2, the program code x = np.zeros(4, dtype=int) uses the numpy function zeros to create
a four-element array with each element initialised to 0. The default array element data type is float.

In IPython (ipython.org), %pylab will install numpy as well as matplotlib.pyplot, a plotting library for
displaying data visually - see Table 2.6.3.

IPython is an interactive python useful for trying out ideas.

Python lists are unsatisfactory as proxies for arrays for the following reasons:

1. Elements of a list can be of different data types, e.g. [3, 4.5, 'hello', True, [34,56]]

2. Lists may grow or shrink, e.g. x = [0,1,2] x.append('a') x.pop()

3. Processing of Python lists is considerably slower than processing arrays from Numpy

Tables 2.6.3, 2.6.4, and 2.6.5 show examples of one-dimensional array creation in C#, Java, Pascal, Delphi, Python
and VB.NET. The Python example uses IPython. IPython already has numpy in its namespace so use of the prefix
np is unnecessary.

Language Integer Real/float

C# int[] vector = new int[4];

int[] vector = {0,1,2,3};

float[] vector = new float[4];

float[] vector = {0.0,1.5,2.3,3.4};

Java int[] vector = new int[4];

int[] vector = {0,1,2,3};

float[] vector= new float[4];

float[] vector = {0.0,1.5,2.3,3.4};

Pascal/

Delphi

Vector : Array[0..3] Of Integer;

Vector : Array[0..3] Of Integer = (0,1,2,3);

Vector : Array[0..3] Of Real;

Vector : Array[0..3] Of Real = (0.0,1.5,2.3,3.4);

Python vector = [0,1,2,3,4] # list equivalent
import numpy as np

vector = np.array([0, 1, 2, 3])

vector = np.empty([4],dtype=int)#empty array

vector = np.zeros(4, dtype=int)

vector = [0.0,1.5,2.3,3.4]

import numpy as np

vector = np.array([0, 1, 2, 3], dtype = float)

vector = np.empty([4])#empty float array

vector = np.zeros(4)

VB.Net Dim vector(3) As Integer

Dim vector = New Integer() {0,1,2,3}

Dim vector(3) As Double

Dim vector = New Double() {0.0,1.5,2.3,3.4}

Table 2.6.2 Creating one-dimensional arrays of different array element data type

Language Integer
Python 3.4

(IPython)

In [1]: %pylab

In [2]: vector2 = array([0,1,2,3]), dtype=int)

In [3]: vector4 = array([0.0,1.5,2.3,3.4], dtype=float)

In [4]: print(vector2[0])

In [5]: print(vector4[3])

Python 3.4

(Scipy)

vector = [1,2,3,4] # list equivalent of an array

print (vector[2])

import numpy as np

vector2 = np.array([1,2,3,4])

print (vector2[2])

Table 2.6.3 Creating one-dimensional arrays of different array element data type

Information
This textbook covers Python (version 3), C# and VB.Net, the programming languages supported by AQA for examinations from 2022
onwards. In addition, it also covers programming languages Java and Pascal/Delphi.

Institution licence - St Martins School Essex

2.6 Data structures

85

Language Integer
C# using System;

namespace Arrays
{
 class Program
 {
 static void Main(string[] args)
 {
 int[] vector1 = new int[4];
 int[] vector2 = { 0, 1, 2, 3 };
 float[] vector3 = new float[4];
 float[] vector4 = { 0.0f, 1.5f, 2.3f, 3.4f };
 double[] vector5 = { 0.0, 1.5, 2.3, 3.4 };
 vector1[0] = 45;
 vector3[0] = 45.8f;
 Console.WriteLine(vector1[0]);
 Console.ReadLine();
 }
 }
}

Java public class Arrays {
 public static void main(String[] args) {
 int[] vector1 = new int[4];
 int[] vector2 = {0,1,2,3};
 float[] vector3 = new float[4];
 float[] vector4 = { 0.0f, 1.5f, 2.3f, 3.4f };
 double[] vector5 = { 0.0, 1.5, 2.3, 3.4 };
 vector1[0] = 45;
 vector3[0] = 45.8f;
 System.out.println(vector1[0]);
 }
}

Delphi Program ArrayVector;
{$APPTYPE CONSOLE}
{$R *.res}
Uses
 System.SysUtils;
Var
 Vector1 : Array[0..3] Of Integer;
 Vector2 : Array[0..3] Of Integer = (0,1,2,3);
 Vector3 : Array[0..3] Of Real;
 Vector4 : Array[0..3] Of Real = (0.0,1.5,2.3,3.4);
Begin
 Vector1[0] := 45;
 Vector3[0] := 45.8;
 Writeln(Vector1[0]);
 Writeln(Vector4[3] :6:1);
 Readln;
End.

Pascal Program ArrayVector;
Var
 Vector1 : Array[0..3] Of Integer;
 Vector2 : Array[0..3] Of Integer = (0,1,2,3);
 Vector3 : Array[0..3] Of Real;
 Vector4 : Array[0..3] Of Real = (0.0,1.5,2.3,3.4);
Begin
 Vector1[0] := 45;
 Vector3[0] := 45.8;
 Writeln(Vector1[0]);
 Writeln(Vector4[3] :6:1);
 Readln;
End.

Table 2.6.4 Creating one-dimensional arrays of different array element data type

Institution licence - St Martins School Essex

 2 Programming

86

Iterating through the elements of a one-dimensional array
Iterating through the elements of an array is a common operation on arrays. Figure 2.6.9 shows the use of a For
loop to access each element of array Vector starting with the first element Vector[0]. The index used is i, the
loop control variable. Table 2.6.6 shows the value of i and the value of array Vector[i] in each iteration of the
For loop.
The one-dimensional array Vector contains 4 elements with the following values 0.0, 1.5, 2.3, 3.4, respectively.

Table 2.6.7 shows the loop pseudo-code expressed in the programming languages C#, Java, Delphi/Pascal, Python
and VB.NET.

Language Integer
VB.NET Module Arrays

 Sub Main()
 Dim vector1(3) As Integer
 Dim vector2 = {0, 1, 2, 3}
 Dim vector3(3) As Single
 Dim vector4(3) As Double
 Dim vector5 = {0.0, 1.5, 2.3, 3.4}
 vector1(0) = 45
 vector3(0) = 45.8F
 vector4(3) = 45.8
 Console.WriteLine(vector1(0))
 Console.WriteLine(vector5(3))
 Console.ReadLine()
 End Sub

End Module

Table 2.6.5 Creating one-dimensional arrays of different array element data type

Value of i Element accessed Value of element
0 Vector[0] 0.0
1 Vector[1] 1.5
2 Vector[2] 2.3
3 Vector[3] 3.4

Table 2.6.6 Value of loop control variable and
element of array Vector on each iteration

Language Integer
C# int i;

for (i = 0; i < 4; i++)
 {
 Console.WriteLine(vector[i]);
 }

Java int i;
for (i = 0; i < 4; i++)
 {
 System.out.println(vector[i]);
 }

Delphi/
Pascal

Var i : Integer;
.....
For i := 0 To 3
 Do Writeln(Vector[i]);

Python for i in range(4):
 print(vector[i])

VB.NET Dim i As Integer
For i = 0 To 3
 Console.WriteLine(vector(i))
Next

Table 2.6.7 Accessing the elements of a one-
dimensional array by iteration with a For loop

FOR i ← 0 TO 3

 OUTPUT Vector[i]

ENDFOR

Figure 2.6.9 Pseudo-code For loop

Programming task
Write a program which iterates through
ArrayOneD outputting each value in turn
starting at the first value contained in this
array. Assume the array is initialised as
follows ArrayOneD = [3,6,7,2].

1

Institution licence - St Martins School Essex

2.6 Data structures

87

Computing a single value from the contents of a one-dimensional array
To sum all the elements of a one-dimensional array, Vector, we must access each element of this array in turn
adding its value to a running total Sum. The variable Sum is initialised to contain zero. Figure 2.6.10 shows
pseudo-code that computes the sum of the elements of array Vector. Array Vector contains 4 elements with the
following values 1, 3, 8, 9.

Table 2.6.8 shows the state of Sum before iteration begins and at the end of each iteration, e.g. after the first
iteration variable Sum contains 1, after the second, 4.

Multi-dimensional arrays
Two-dimensional arrays
We have so far considered how data may be stored in a one-dimensional array. A one-dimensional array has, of
course, one dimension. We can visualise the items of data in a one-dimensional array arranged along a single axis as
shown by the example in Figure 2.6.11.

If we have two dimensions for storing data then we can visualise the
data stored in a grid-like fashion defined by two axes as shown in
Figure 2.6.12.
The structure of 5 rows and 5 columns of data shown in Figure 2.6.12
is called a two-dimensional array or matrix.
The matrix contains 5 x 5 = 25 numbers.

Value of i Element accessed Value of element Sum
0

0 Vector[0] 1 1
1 Vector[1] 3 4
2 Vector[2] 8 12
3 Vector[3] 9 21

Table 2.6.8 Summing the elements of a one-dimensional array

Sum ← 0
FOR i ← 0 TO 3
 Sum ← Sum + Vector[i]
ENDFOR

OUTPUT Sum

Figure 2.6.10 For loop

Programming tasks
Write a program which iterates through ArrayOneD and sums the values contained in this array. Assume
the array is initialised as follows ArrayOneD = [3,6,7,2].

Write a program which collects 6 integer values from the keyboard and stores them in an array called
IntegerArray. The program is to display the contents of each cell of the array in turn, starting at the first
cell, after all the values have been entered.

Using the same program structure, add code which calculates the average of the first three numbers stored
in the array and the second three numbers.

Using the same program structure, add another array to the program of the same size and type as the first.
Now add code to copy the contents of the first array to the second array so that the second array holds the
contents of the first array in reverse order.

2

3

4

5

23 64 15 25 0 10 209 145

Figure 2.6.11 Visualising items of numerical data in a one-
dimensional array arranged along a single axis

23
2-D
Grid

64 15 25 9

145 0 10 20 86

5 81 40 0 333

3 74 42 7 91

44 540 16 81 12

column0

0

1

1

2

2

3

3

4

4

row
Figure 2.6.12 Visualising items of numerical
data stored in a two-dimensional array laid
out in two dimensions

Institution licence - St Martins School Essex

 2 Programming

88

In order to refer to a specific number, we need to specify both the row and column because the matrix has two
dimensions. For example, the third value along in the second row in Figure 2.6.12 is the number 10. This number
has been marked by a red square in the figure.
The axes in Figure 2.6.12 have been labelled, row and column so that the first row has value 0 and the first
column has value 0. Therefore, the row and column values of the number 10 marked by a red square are 1 and 2,
respectively.

Iterating through the elements of a two-dimensional array
Iterating through the elements of an array is a common operation on arrays. Figure 2.6.13 shows the use of nested
For loops to access each element of array Array2D starting with the first element Array2D[0][0]. The outer For
loop uses the loop control variable, i. The inner For loop uses the loop control variable, j.
The two-dimensional array Array2D contains 3 x 3 = 9 elements with values as shown in Table 2.6.9.

The trace table, Table 2.6.10, shows the value of array
Array2D[i][j] and the output for each value of i and
j. A trace table is a table which shows the current values of
variables used by the pseudo-code and its output whilst the
pseudo-code is executed (traced) by hand. This execution by
hand is called a hand-trace.

FOR i ← 0 TO 2

 FOR j ← 0 TO 2

 OUTPUT Array2D[i][j]

 ENDFOR

ENDFOR

Figure 2.6.13 Pseudo-code that iterates through the
elements of array Array2D

12 45 6
9 23 65
2 18 33

0 1 2

0
1
2

Table 2.6.9 Array2D

i j Array2D[i][j] Output
0 0 12 12
0 1 45 45
0 2 6 6
1 0 9 9
1 1 23 23
1 2 65 65
2 0 2 2
2 1 18 18
2 2 33 33

Table 2.6.10 Trace table for pseudo-code

Questions
The following algorithm determines the average
temperature of three sets of temperature readings
each collected on a separate occasion.

The temperature readings are stored in a two dimensional array temperature as follows

total ← 0.0

row ← 0

column ← 0

noOfrows ← LEN(temperature)

REPEAT

 row ← row + 1

 noOfcolumns ← LEN(temperature[row])

 REPEAT

 column ← column + 1

 total ← total + temperature[row][column]

 UNTIL column = noOfcolumns

 column ← 0

UNTIL row = noOfrows

noOfreadings ← noOfrows * noOfcolumns

average ← total / noOfreadings

OUTPUT average

column row total
1 1 0.0

Table 2.6.11

[[5, 6, 6],
 [7, 9, 8],
 [2, 4, 5]]

Each row corresponds to one set of readings.
Note: Array indexing starts at 1.
Complete the trace table Table 2.6.11 for this algorithm.

10

Institution licence - St Martins School Essex

2.6 Data structures

89

Creating two-dimensional arrays in some programming languages
Table 2.6.12 shows the creation of two-dimensional arrays in C#, Java, Pascal, Delphi, Python 3.4 and VB.NET.

C#
The following creates a two-dimensional integer array of 4 rows and 2 columns

int[,] array2D = new int[4,2];

The following creates and initialises a two-dimensional integer array of 4 rows and 2 columns

int[,] array2D = {{1,2},{3,4},{5,6},{7,8}};

If the array is being initialised, new int[4,2] can be omitted. Array indexing is zero-based.

Java
The following creates a two-dimensional integer array of 4 rows and 2 columns

int[][] array2D = new int[4][2];

The following creates and initialises a two-dimensional integer array of 4 rows and 2 columns

int[][] array2D = {{1,2},{3,4},{5,6},{7,8}};

Array indexing is zero-based.

Pascal/Delphi
The following creates a two-dimensional integer array of 4 rows and 2 columns

Array2D : Array[0..3,0..1] Of Integer;

Questions
What is the output from the algorithm in question 10?11

Lang-

uage
Integer Real/float

C#
int[,] array2D = new int[4,2];

int[,] array2D = {{1,2},{3,4},{5,6},{7,8}};
float[,] array2D = new float[4,2];

Java
int[][] array2D = new int[4][2];

int[][] array2D = {{1,2},{3,4},{5,6},{7,8}};
float[][] array2D=new float[4][2];

Pascal
Array2D : Array[0..3,0..1] Of Integer;

Array2D : Array[0..3,0..1] Of Integer = ((1,2),(3,4),(5,6),(7,8));
Array2D: Array[0..3,0..1] Of Real;

Delphi
Array2D : Array[0..3,0..1] Of Integer;

Array2D : Array[0..3,0..1] Of Integer = ((1,2),(3,4),(5,6),(7,8));
Array2D : Array[0..3,0..1] Of Real;

Python

array2D = []

for row in range(4):

 array2D.append([])

 for column in range(2):

 array2D[row].append(0)#creating a 4 x 2 list equivalent

import numpy as np

array2D = np.array([[1,2], [3,4], [5,6], [7,8]])

array2D = np.empty([4,2],dtype=int)# creates a 4 x 2 empty array

array2D = []

for row in range(4):

 array2D.append([])

 for column in range(2):

 array2D[row].append(0.0)

import numpy as np

array2D =

np.empty([4,2],dtype=float)

VB.
NET

Dim array2D(3, 1) As Integer

Dim array2D = New Integer(3, 1) {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
Dim array2D(3,1) As Double

Table 2.6.12 Creating two-dimensional arrays of different array element data type

Institution licence - St Martins School Essex

 2 Programming

90

The following creates and initialises a two-dimensional integer array of 4 rows and 2 columns

Array2D : Array[0..3, 0..1] Of Integer = ((1,2),(3,4),(5,6),(7,8));

Array indexing is more flexible in Pascal and Delphi. It may begin at any value, e.g. -1, 1. Array is a keyword in
Pascal and Delphi.
Python
The following creates an equivalent of a two-dimensional integer array of 4 rows and 2 columns by using lists
within a list and initialises it with zeros

array2D = []
for row in range(4):
 array2D.append([])
 for column in range(2):
 array2D[row].append(0)

List indexing is zero-based.

The following creates an empty two-dimensional integer array of 4 rows and 2 columns by using the numpy library
import numpy as np
array2D = np.empty([4,2],dtype=int)

The following creates and initialises a two-dimensional integer array of 4 rows and 2 columns

array2D = np.array([[1,2], [3,4], [5,6], [7,8]])

VB.NET
The following creates a two-dimensional integer array of 4 rows and 2 columns

Dim array2D(3, 1) As Integer

Array indexing is zero-based. 3 and 1 are the upper bound index values.

The following creates and initialises a two-dimensional integer array of 4 rows and 2 columns

Dim array2D = New Integer(3, 1) {{1, 2}, {3, 4}, {5, 6}, {7, 8}}

Programming task
Write a program which creates a two-dimensional array ArrayTwoD and displays the values contained in
the second row of this array. The array ArrayTwoD should be created with values arranged into rows and
columns as follows

6

[[3,6,7],
[4,8,1],
[9,3,8]]

ArrayTwoD =

Institution licence - St Martins School Essex

2.6 Data structures

91

Use of records
Table 2.6.13 shows how to define a record data type in Pascal/Delphi, C#,
Python, Java and VB.Net.
Figure 2.6.14 shows in pseudo-code how the fields of the record variable,
studentRecord of data type Exam
may be accessed using the dot notation,
e.g. the name field is accessed with
studentRecord.name.

In this chapter you have covered:

 ■ The concept of data structures

 ■ Using arrays (or equivalent) in the design of solutions to simple problems

 ■ Using records (or equivalent) in the design of solutions to simple problems.

Pascal/Delphi C#
TExam = Record

 Name : String;

 ExamScore : Integer;

 ExamGrade : Char;

 End;

struct Exam

{

 public string name;

 public int ExamScore;

 public char ExamGrade;

};

Python Java
class exam(object):

 def __init__(name,examscore,examgrade)

 self.name = name

 self.examscore = examscore

 self.examgrade = examgrade

class Exam {

 String name;

 int examScore;

 char examGrade;

}

 VB.Net
Structure exam

 Public name As String

 Public examScore As Integer

 Public examGrade As Char

End Structure Table 2.6.13 Defining the record data type in various programming languages

 OUTPUT 'Input name: '
 studentRecord.name ← USERINPUT
 OUTPUT 'Input Mark Out Of 100: '
 studentRecord.examScore ← USERINPUT
 OUTPUT 'Input exam grade: '
 studentRecord.examGrade ← USERINPUT
 OUTPUT studentRecord.name
 OUTPUT studentRecord.examScore
 OUTPUT studentRecord.examGrade

Figure 2.6.14 Pseudo-code which shows how fields of a record can be accessed

Programming task
Convert the pseudo-code in Figure 2.6.14 into a program in a programming language with which you are
familiar. You need to create a student record, studentRecord of data type Exam.
Change this program so that the exam grade is calculated on being input by the user.
Use the grade boundaries: grade A is 70 marks or greater, grade B is less than 70 but greater than 49 marks,
grade C is less than 50 but greater than 39, grade U is less than 40.

7

RECORD Exam
 name : String
 examScore : Integer
 examGrade : Char
ENDRECORD

Institution licence - St Martins School Essex

92

Learning objectives:

 ■ Be able to obtain user input
from the keyboard

 ■ Be able to output data and
information from a program
to the computer display

 ■ Be able to read/write from/to a
text file.

 2 Programming

2 Programming
 ■ 2.7 Input/output and file handling

Input/output
Data is typically input into a computer by a user via a keyboard connected to
the computer as shown in Figure 2.7.1. The data is processed by a program
executing in the computer and information is produced.

This information is communicated to the
user by being output to a computer display
such as a visual display unit (VDU).
The operating system in the computer
usually echoes whatever is typed on the
keyboard to the output device, i.e. the
VDU.

For example, In Figure 2.7.1 all of the
text that appears on the VDU screen could
just be data which has been typed at the
keyboard. It appears on the screen of the
VDU courtesy of the operating system.

Text is the operative word. It highlights
the fact that a keyboard is a source of text,
a sequence of characters. Each character
corresponds in most ordinary situations to
a key pressed on the keyboard, e.g. the key
N.
Even when digit keys are pressed, e.g. to

produce the sequence 55, it is still text.
"Under the hood", when the key labelled 5 is pressed, its ASCII code is
generated and sent to the computer (actually a scan code is generated first).
The operating system echoes this text to the screen as it is being typed.

Obtaining user input from a keyboard
A program designed to process input data will usually access a line of input at a time from the user.
In pseudo-code, the operation of obtaining user input from a keyboard is expressed as follows

aVariable ← USERINPUT

where aVariable is a variable of some data type (text input is automatically converted into a data type that
matches the variable's data type, e.g. '55' ↦ 55).

Key term
Text:
Text consists of sequences of

characters, one sequence per line.

Hello
55
0.4567
N

Figure 2.7.1 Computer connected to a VDU (output device)
and a keyboard (input device)

Output device - VDU

Input device - Keyboard

Computer

Institution licence - St Martins School Essex

 2 Programming

93

The operator ← is the assignment operator which carries out the operation of assigning to variable, aVariable,
the datum obtained from the keyboard (typed in by pressing keys).

Outputting data and information to a computer display
A program designed to produce output for a user to see immediately will send output to a visual device such as a
VDU.

In pseudo-code, the operation of outputting a result stored in a variable aResult is expressed as follows

OUTPUT ꞌThe result is: ꞌ

OUTPUT aResult

The program may have produced this output by processing input data. So that a user knows what input data to
supply and when, a program will output a prompt to the user.
In pseudo-code, the operation of prompting a user for input is expressed as follows

OUTPUT ꞌEnter a number between 1 and 9: ꞌ

This is followed by an input statement such as

aNumber ← USERINPUT

Example
The following pseudo-code collects an integer from the keyboard, doubles it then outputs the result to the VDU

OUTPUT ꞌEnter a number between 1 and 9: ꞌ

anInteger ← USERINPUT

aResult ← anInteger * 2

OUTPUT ꞌThe result is: ꞌ

OUTPUT aResult

Files (In specification 8520 but not in 8525)
A file is a data structure for storing data. The number of items of data stored
in the file can vary in time and the amount of data is not limited in the way
that other data structures are because files rely on secondary storage such as
magnetic disk for their storage unlike arrays which rely on RAM storage.

By using secondary storage, files persist in time because secondary storage is
non-volatile whereas RAM is volatile.

A file is assigned a name called its filename so that it can be referenced by name.

Files have structure which is either defined by the programmer at creation time,
a file of some record type or is a commonly used structure such as text.

Key term
File:
A file is a data structure for

storing data. The number of items

of data stored in the file can vary

in time and the amount of data is

not limited in the way that other

data structures are because files

rely on secondary storage such

as magnetic disk for their storage

unlike arrays which rely on RAM

storage.

Questions
What is a file?1

Extension Material

Headings in red , e.g.
Files, indicate that the
following content was in
specification 8520 - last
examination summer 2021
- but is not in specification
8525 - first examination
summer 2022)

Institution licence - St Martins School Essex

2.7 Input/output and file handling

94

Text files
Text files are files whose contents are sequences of characters organised on a line by line basis. For example,
Shakespeare’s Sonnet 116 shown in Figure 2.7.2 consists of 14 lines as do almost all of Shakespeare’s sonnets.

Text files may be opened and read in a text editor such as Microsoft’s WordPad. Text editors expect files to be
organised on a line-by-line basis and to consist of characters that can read when displayed with the exception of
some specific control characters.
Each line ends with a special control character called the end of line or newline character (character code 10 or
character codes 10 and 13).
The only control characters that text editors are able to handle are characters called whitespace characters, i.e.
characters with ASCII or UTF-8 character codes 32 (space), 10 (line feed), 13 (carriage return) and 9 (tab).
Other control characters have an effect on a text editor which is unpredictable and usually render the display
unreadable.

Non-text files do not display well in text editors because they often contain control character codes which text
editors are unable to handle because they are not control character codes 32, 10, 13 or 9.

Not only can text files be read by text editors but they may also be created and edited in a text editor.

We turn to computer programs when we wish to manipulate text files in ways that text
editors do not support.

Reading from a text file
Figure 2.7.3 shows a Python program which
opens a text file with the filename 'sowpods.txt' for
reading. The contents of this file is read one line
at a time from the beginning of this file. Each line
which is read is stored temporarily in the string
variable line. The line of characters stored in this variable is displayed on the console by
print(line). Finally the file is closed.

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O, no! it is an ever-fixed mark,
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth’s unknown, although his height be taken.
Love’s not Time’s fool, though rosy lips and cheeks
Within his bending sickle’s compass come;
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me prov’d,
I never writ, nor no man ever lov’d.

Figure 2.7.2 Shakespeare’s Sonnet 116

Key term
Text file:
Text files are files whose contents

are sequences of characters

organised on a line by line basis.

Questions
What is a text file?2

f = open("sowpods.txt", "r")
for line in f:
 print(line)
f.close()

Figure 2.7.3 Python program which opens
a text file ‘sowpods.txt’ for reading and
displaying

aa
aah
aahed
aahing
aahs
aal
aalii
aaliis
aals
aardvark
aardvarks

Figure 2.7.4 The first
few lines of the text file
‘sowpods.txt’

Institution licence - St Martins School Essex

 2 Programming

95

The first thing that this Python program does is open the specified file in a particular mode, in this case, for reading.

The call to open("sowpods.txt", "r") returns a file handle which is assigned to file handle variable f. "r"
specifies that the mode is reading.

The contents of file "sowpods.txt" are now accessed through file handle f.

Next, for line in f iterates through the file line-by-line. The file handle f is aware of the file structure, and
is able to keep track of which line in the file is currently selected so that string variable line is able to receive the
next line of the file.

The print statement print(line) outputs the line it currently stores followed by a newline character.
A newline character is the line feed character (character code 10).

Unfortunately, this results in a blank line between lines appearing on the
output because each line in line ends with a newline character as well.

The solution is to delete the newline character ('\n') from the end of the string in variable line before
print(line)is reached. Figure 2.7.5 shows the revised Python program.
The action of strip() removes the whitespace at the end of the line, i.e. the newline character.

Summarising, reading from a text file takes the following form:
open the text file for reading

read the text file line-by-line

do something with each line

close the file

We can also read from the file in the following ways:
line = f.readline() will read one line of the file into
variable line.
all_lines = f.read() will read the entire contents of a file into variable all_lines.

Figure 2.7.6 and Figure 2.7.7 show how to read from a text file in Pascal/Delphi, Java, VB.NET and C#.

Java requires try catch around the code because the methods which are called under the hood are designed to throw
exceptions which have to be trapped (or caught).

Two ways of reading a file are shown for Java, VB.NET and C#.

f = open("sowpods.txt", "r")
for line in f:
 line = line.strip()
 print(line)
f.close()

Figure 2.7.5 Python program which opens a text
file ‘sowpods.txt’ for reading and displaying

>>>line = f.readline()
>>>line
'aa\n'

Institution licence - St Martins School Essex

2.7 Input/output and file handling

96

Pascal/Delphi
Program ReadingATextFile;
Var
 f : TextFile;
 Line : String;
Begin
 AssignFile(f, 'Sonnet116.txt');
 Reset(f);
 While Not Eof(f)
 Do
 Begin
 Readln(f, Line); {Read line of text from file into string variable Line}
 Writeln(Line); {Write line of text in string variable Line to output}
 End;
 CloseFile(f);
 Readln;
End.

Java
import java.io.FileReader;
import java.io.BufferedReader;
public class ReadATextFile {
 public static void main(String[] args) {
 try{
 // Read the file and display it line by line.
 FileReader f = new FileReader("Sonnet116.txt");
 BufferedReader textReader = new BufferedReader(f);
 String line;
 while ((line = textReader.readLine()) != null) {
 System.out.println(line);
 }
 }
 catch (IOException e)
 {
 System.out.println(e);
 }

 FileReader inputStream = null;

 try {
 // Read the file and display it character by character.
 inputStream = new FileReader("Sonnet116.txt");
 int ch;
 System.in.read();
 while ((ch = inputStream.read()) != -1) {
 System.out.print((char)ch);
 }
 }
 catch (IOException e)
 {
 System.out.println(e);
 }
 }
}

Figure 2.7.6 Reading from a text file "Sonnet116.txt" in Pascal/Delphi and Java

Institution licence - St Martins School Essex

 2 Programming

97

Writing to a text file
In Python, if we want to write to a file with filename "studentresults.txt", we open this file in write
mode ("w") with

f = open("studentresults.txt", "w")

This will create a new file "studentresults.txt" or overwrite this file if it exists already.

The program in Figure 2.7.8 collects a student name and the student’s exam score typed at the keyboard and then
using the file handle f to the opened file, writes student name then a comma then exam score on the same line to
the opened text file

f.write(student_name + "," + exam_mark + "\n")

"\n" is the special control character called the end of line or newline character.

VB.NET
Imports System
Imports System.IO
Module Module1
 Sub Main()

' Reads the entire file at once
 ' Open the file using a stream reader.
 Using f As New StreamReader("Sonnet116.txt")
 Dim line As String
 ' Read the stream string variable line and write the string to the console.
 line = f.ReadToEnd() ' Reads to end of file
 Console.WriteLine(line)
 End Using ' Dispose of all the resources
 Console.ReadLine()

' Reads the file line-by-line.
 ' Open the file using a stream reader.
 Using f As New StreamReader("Sonnet116.txt")
 Dim line As String
 line = f.ReadLine()
 While Not (line Is Nothing)
 Console.WriteLine(line)
 line = f.ReadLine()
 End While
 End Using
 Console.ReadLine()
 End Sub
End Module

C#
using System;
namespace ReadingATextFile
{
 class Program
 {
 static void Main(string[] args)
 {
 // Read the whole file into a string array lines.
 string[] lines = System.IO.File.ReadAllLines("Sonnet116.txt");
 foreach (string line in lines)
 {
 Console.WriteLine(line);
 }
 Console.ReadLine();
 string nextLine;
 // Read the file and display it line by line.
 System.IO.StreamReader f = new System.IO.StreamReader("Sonnet116.txt");
 while ((nextLine = f.ReadLine()) != null)
 {
 System.Console.WriteLine(nextLine);
 }

 f.Close();
 Console.ReadLine();
 }
 }
}

Figure 2.7.7 Reading from a text file "Sonnet116.txt" in VB.NET and C#

Institution licence - St Martins School Essex

2.7 Input/output and file handling

98

This ensures that the file handle f is ready to write the next student name, comma, exam score combination on the
next line.
Entering the student name "quit" causes the program to exit the while loop but not before printing "Quitting...".
Finally the file is closed.

Figure 2.7.9 shows the contents of "studentresults.txt" produced by executing the program in Figure
2.7.8.

Appending to a text file
Changing the file mode to "a" allows new lines to be appended to the end of
"studentresults.txt" if it exists or to an empty newly created
"studentresults.txt" - Figure 2.7.10.

Figure 2.7.11 shows two ways of writing to text files in Pascal/Delphi, Java and one way in VB.NET.

Pascal:
1. Line-by-line:

For Line in Lines

 Do Writeln(f, Line);

2. Writing all the lines in one go
Lines.LoadFromFile('Sonnet116.txt');

Lines.SaveToFile('AnotherNewFile.txt');
Java:

1. Using java.io.PrintWriter
2. Using java.io.PrintWriter and java.io.File

VB.NET: Using StreamWriter and WriteLine.

Bond K, 95
Cheadle P, 85
Gunawardena P, 90
Khan M, 88
De Silva S, 75
Smith E,55
Teng P, 85
Tipp S,30

Figure 2.7.9 Contents
of "studentresults.txt"
created by program in
Figure 2.7.8

f = open("studentresults.txt", "w")
while True:
 student_name = input("Name: ")
 if student_name == "quit":
 print("Quitting...")
 break
 exam_mark = input("Exam score for " + student_name + " : ")
 f.write(student_name + "," + exam_mark + "\n")
f.close()

Figure 2.7.8 Python program which creates and writes lines of text
to a text file ‘studentresults.txt’

f = open("studentresults.txt", "a")
while True:
 student_name = input("Name: ")
 if student_name == "quit":
 print("Quitting...")
 break
 exam_mark = input("Exam score for " + student_name + " : ")
 f.write(student_name + "," + exam_mark + "\n")
f.close()

Figure 2.7.10 Python program which appends lines of text to an
existing text file ‘studentresults.txt’

Institution licence - St Martins School Essex

 2 Programming

99

Pascal/Delphi
Program WriteToATextFile;
Uses Classes;
Var
 f : TextFile;
 Lines : TStringList;
 Line : String;
Begin
 AssignFile(f, 'NewFile.txt');
 Rewrite(f);
 Lines := TStringList.Create;
 Lines.Add('Let me not to the marriage of true minds');
 Lines.Add('Admit impediments. Love is not love');
 Writeln(Lines.text);
 For Line in Lines
 Do Writeln(f, Line); {Write a line of text to text file}
 CloseFile(f);
 Lines.Clear;
 Lines.LoadFromFile('Sonnet116.txt');
 Lines.SaveToFile('AnotherNewFile.txt');
 Readln;
End.

Java
import java.io.IOException;
import java.io.PrintWriter;
import java.io.File;
public class WriteToATextFile {
 public static void main(String[] args) {
 try{
 PrintWriter printLine = new PrintWriter("Z:/NewFile.txt");
 String line = "Let me not to the marriage of true minds";
 printLine.println(line); // Write a line of text to the file
 printLine.close(); // Close the file
 File f = new File("Z:/AnotherNewFile.txt");
 if (!f.exists()) {
 if (f.createNewFile()) {
 PrintWriter newPrintLine = new PrintWriter(f);
 newPrintLine.println("Let me not to the marriage of true minds");
 newPrintLine.println("Admit impediments. Love is not love");
 newPrintLine.close();
 }
 }
 }
 catch (IOException e){
 System.out.println(e);
 }
 }
}

VB.NET
Imports System
Imports System.IO
Imports System.Text
Module Module1
 Sub Main()
 Try
 Dim w As StreamWriter = New StreamWriter("NewFile.txt")
 w.WriteLine("Let me not to the marriage of true minds")
 w.WriteLine("Admit impediments. Love is not love")
 w.Close()
 Catch e As Exception
 Console.WriteLine("The process failed: {0}", e.ToString())
 End Try
 End Sub
End Module

Figure 2.7.11 Writing to a text file in Pascal/Delphi, Java and VB.NET

Institution licence - St Martins School Essex

2.7 Input/output and file handling

100

Figure 2.7.12 shows one way of writing to text files in C#.

In this chapter you have covered:

 ■ Obtaining user input from the keyboard

 ■ Outputting data and information from a program to the computer display

 ■ Reading/writing from/to a text file.

C#
using System;
using System.Text;
using System.IO;
namespace WriteToATextFile
{
 class Program
 {
 public static void Main()
 {
 try
 {
 using (StreamWriter w = new StreamWriter("NewFile.txt"))
 {
 w.WriteLine("Let me not to the marriage of true minds");
 w.WriteLine("Admit impediments. Love is not love");
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("The process failed: {0}", e.ToString());
 }
 }
 }
}

Figure 2.7.12 Writing to a text file in C#

Programming tasks
Write a program which makes a copy of a text file. Your program should prompt the user to enter the

names of the input and output text files.

Write a program that reads a text file and displays it with the corresponding line number at the beginning
of each line. Start line numbering from 1.

The text file "Dict5LetterWords.txt" (download from www.educational-computing.co.uk/CS/Textfiles.
html) contains 5 letter words. Write a program which finds all 5 letter words in this file which contain the
substring 'oe'.

The text file "sowpods.txt" is an official Scrabble dictionary (download from www.educational-computing.
co.uk/CS/Textfiles.html). Write a program to find all words containing a particular substring in the text file
"sowpods.txt". The program should prompt the user to enter a substring to search for.

Write a program to create a Geography quiz which tests a user’s knowledge of country capitals.
Use the text file "countriescapitals.txt" (download from www.educational-computing.co.uk/CS/Textfiles.
html) which is a comma separated file of countries and their capitals.
The program should display the name of a country chosen at random from this text file and prompt the
user to supply the name of the capital of this country. The program should then check the user’s answer.
If the user’s answer is correct the program should respond "Well done, you got it right!". If the user’s answer
is incorrect the program should respond "Incorrect answer, the correct answer is ???????" where the correct
answer is substituted for the string "???????" when the program executes.

1

2

3

4

5

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk/CS/Textfiles.html
http://www.educational-computing.co.uk/CS/Textfiles.html
http://www.educational-computing.co.uk/CS/Textfiles.html
http://www.educational-computing.co.uk/CS/Textfiles.html
http://www.educational-computing.co.uk/CS/Textfiles.html
http://www.educational-computing.co.uk/CS/Textfiles.html

101

Learning objectives:

 ■ Understand and be able to
use :

• length

• position

• substring

• concatenation

• convert character to
character code

• convert character code to
character

• string conversion
operations.

 2 Programming

2 Programming
 ■ 2.8 String-handling operations

Strings
A string is a sequence of zero or more characters.

The encoding used for each character in a string could be ASCII (7-bits), ANSI
(8 bits = ASCII/OEM), or some version of Unicode, e.g. UTF-16.
UTF-16 is effectively how characters are maintained internally in .NET1.
In versions of Delphi from Delphi 2009 onwards, string characters are encoded
in UTF-16.

String operations
Strings are used to store human-readable text. The literal string, 'Hello World!',
consists of twelve characters (10 letters, 1 punctuation mark and 1 space)
placed between single quotes. Some programming languages use single quotes,
some use double quotes and others allow the use of both, e.g. Python.

The literal string of twelve characters, ‘Hello World!’, is stored in a container with a capacity for more than twelve
bytes because

• each character may need more than one byte, e.g. when UTF-16 is used
• some bytes must be used to store the count of characters or to indicate the end of the sequence of

characters.
For this and other reasons programming languages provide a library of routines and string operators for
programmers to use when working with strings.

String indexing
To access individual characters of a string an
indexing scheme is required.
Figure 2.8.1 shows a scheme that starts
numbering string elements (characters) at 0.
Figure 2.8.2 shows a Delphi XE5 program
and its output.
The program creates a string container
(variable) called s in a declaration.
The program assigns the string value 'Hello World!' to variable s.
It obtains the index number of the character 'H' when s.IndexOf('H') is evaluated.
This number is 0 which is written to the console by Writeln.
It then confirms that the index of 'H' is 0 with Writeln(s[0]).
The brackets [] are one mechanism by which individual characters of a string may be accessed.
In this example, the index is treated as an offset. If the offset is 0 then we stay on 'H'.

1 .NET Framework is a software framework developed by Microsoft

Information
Character:
The Unicode

Glossary defines a

character as:

The smallest

component of

written language

that has semantic

value.

H e l l o

0 1 2 3 4 5
o�set 1

Figure 2.8.1 Zero-based numbering scheme for elements of a string

Institution licence - St Martins School Essex

 2 Programming

102

To test this, we try s[1] and s[4]- see Figure 2.8.3. The character one on from the beginning of the string is ‘e’,
four on is ‘o’.

Figure 2.8.4 shows a VB.NET program which uses string indexing. In VB.NET the brackets () are used to access
individual characters of a string. In this example, the index is treated as an offset.
If the offset is 0 then we stay on 'H'.

Figure 2.8.5 shows a C# program which uses string indexing. In C# the brackets [] are used to access individual
characters of a string.

In this example, the index is treated as an offset. If the offset is 0 then we stay on 'H'.

Key term
Unicode:
Unicode is a computing industry

standard for the consistent

encoding, representation, and

handling of text expressed in most

of the world’s writing systems.

Unicode provides a unique

number for every character:

no matter what the platform;

no matter what the program;

no matter what the language.

Program StringIndexingExample1;
{$APPTYPE CONSOLE}
{$ZEROBASEDSTRINGS ON}
{$R *.res}
Uses
 System.SysUtils;
Var s : String;
Begin
 s := 'Hello World!';
 Writeln(s.IndexOf('H'));
 Writeln(s[0]);
 Readln;
End.

Figure 2.8.2 String indexing illustrated by a Delphi XE5 program and its output

Program StringIndexingExample2;

{$APPTYPE CONSOLE}

{$ZEROBASEDSTRINGS ON}

{$R *.res}

Uses

 System.SysUtils;

Var s : String;

Begin

 s := 'Hello World!';

 Writeln(s[1]);

 Writeln(s[4]);

 Readln;

End.

Figure 2.8.3 String indexing illustrated by a Delphi XE5 program and its output, 'e' has index 1 because it is
offset by 1 from beginning of string, 'o' has index 4 because it is offset by 4.

H e l l o

0 1 2 3 4 5
o�set 1

Institution licence - St Martins School Essex

2.8 String-handling operations

103

Module StringIndexing

 Sub Main()

 Dim s As String

 s = "Hello World!"

 Console.WriteLine(s)

 Console.WriteLine(s.IndexOf("H"))

 Console.WriteLine(s(0))

 Console.WriteLine(s(1))

 Console.WriteLine(s(4))

 Console.ReadLine()

 End Sub

End Module

Figure 2.8.4 String indexing illustrated by a Visual Basic 2015 program and its output, the index of 'H' is 0,
'e' has index 1 because it is offset by 1 from beginning of string, 'o' has index 4 because it is offset by 4.

using System;

namespace ConsoleStringIndexing

{

 class StringIndexing

 {

 static void Main(string[] args)

 {

 string s;

 s = "Hello World!";

 Console.WriteLine(s);

 Console.WriteLine(s.IndexOf('H'));

 Console.WriteLine(s[0]);

 Console.WriteLine(s[1]);

 Console.WriteLine(s[4]);

 Console.ReadLine();

 }

 }

}

Figure 2.8.5 String indexing illustrated by a Visual C# 2015 program and its output, the index of 'H' is 0, 'e'
has index 1 because it is offset by 1 from beginning of string, 'o' has index 4 because it is offset by 4.

Institution licence - St Martins School Essex

 2 Programming

104

Figure 2.8.6 shows a Java program which uses string indexing.
In Java, the function charAt is used to
access individual characters of a string. In this
example, the index is treated as an offset. If
the offset is 0 then we stay on 'H'.

Figure 2.8.7 shows string indexing in
Interactive Python 3.4.
The brackets [] are used to access individual
characters of the string "Hello World!". In
this example, the index is treated as an offset.
If the offset is 0 then we stay on 'H'.

public class StringIndexing {

public static void main(String[] args) {

String s;

s = "Hello World";

System.out.println("Hello World!");

System.out.println(s.indexOf("H"));

System.out.println(s.charAt(0));

System.out.println(s.charAt(1));

System.out.println(s.charAt(4));

 }

}

Figure 2.8.6 String indexing illustrated by a Java program
and its output, the index of 'H' is 0, 'e' has index 1 because it
is offset by 1 from beginning of string, 'o' has index 4 because
it is offset by 4. Figure 2.8.7 String

indexing illustrated
in Interactive Python
3.4 and its output, the
index of 'H' is 0, 'e'
has index 1 because
it is offset by 1 from
beginning of string,
'o' has index 4 because
it is offset by 4.

Information
In Delphi prior to XE2 string indexing is one-
based as shown in Figure 2.8.8. Indexing is
treated as an ordinal number not an offset.
Delphi XE3 onwards requires the directive
ZEROBASEDSTRINGS OFF for one-based string
indexing.

H e l l o

1 2 3 4 5

Ordinal
No

Program StringIndexingExampleOneBased;

{$APPTYPE CONSOLE}

{$R *.res}

Uses

 System.SysUtils;

Var s : String;

Begin

 s := 'Hello World!';

 Writeln(s);

 Writeln(s[1]);

 Writeln(s[2]);

 Writeln(s[5]);

 Readln;

End.

Figure 2.8.8 One-
based string indexing
illustrated by a Pascal/
Delphi program and its
output, the index of 'H' is
1, 'e' has index 2, 'o' has
index 5.

Institution licence - St Martins School Essex

2.8 String-handling operations

105

Length of a string
In Pascal and Delphi the Length function returns the number of characters in a string.

Figure 2.8.9 shows the Length function returning 12 for the length of string s which contains string value 'Hello
World!'. The For loop iterates from 0 to 11 (Length(s) - 1) to access each character of this zero-based-indexed
string and Writeln(s[i])then sends a copy of the selected character to the console where it is displayed.

Figure 2.8.10 shows a C# program which uses the Length property of a C# string object. In C# a string is
an object of type String whose value is a sequence of Char object characters. The Length property of a string
represents the number of Char objects it contains. The alias string is used in place of the class type String. Letter
case is significant in C#.

String objects are immutable: they cannot be changed after they have been created. All of the String methods and
C# operators that appear to modify a string actually return the results in a new string object.

In the following source code, string is an alias for the String class in the .NET framework:

string s = "Hello World!"

 In the source code

Console.WriteLine("No of characters in string s = {0}", s.Length);

The expression s.Length evaluates to the length of the string that s contains.

In the literal string value "No of characters in string s = {0}", s.Length);

{0} is a place holder for the returned string length value 12.

Figure 2.8.9 Using Pascal/Delphi’s Length function to iterate through the characters of a zero-based string.

Program StringLengthZeroBased;

{$APPTYPE CONSOLE}

{$ZEROBASEDSTRINGS ON}

{$R *.res}

Uses

 System.SysUtils;

Var

 s : String;

 i : Integer;

Begin

 s := 'Hello World!';

 Writeln(s);

 Writeln('No of characters in string s = ', Length(s));

 Writeln('Character at offset 0 = ', s[0]);

 For i := 0 To Length(s) - 1

 Do Writeln(s[i]);

 Readln;

End.

Directive to compiler instructing it to use string indexing which starts at 0

String value 'Hello 'World!'

String variable

Stops console window closing until return
key pressed

Loop control variable i

Directive to compiler to create an executable that is a console application

Information
In AQA pseudo-code, the length of a string
is given by LEN(StringExp), e.g.
 LEN('computer science')
which evaluates to 16 (including space)

Institution licence - St Martins School Essex

 2 Programming

106

Figure 2.8.11 shows a Java program which uses the length method of
a Java string object. In Java, a string is an object of type String whose
value is a sequence of characters of data type char - a single 16-bit
Unicode character. The length method of a string object returns the
number of characters it contains.
Enclosing a character string within double quotes automatically creates
a new String object. String objects are immutable, which means that
once created, their values cannot be changed.

 Figure 2.8.12 shows a VB.NET program which uses the Length property of a VB.NET string object. In VB.NET,
a string is an object of type String whose value is a sequence of characters of data type char - a single 16-bit
Unicode character. The Length property of a string object returns the number of characters it contains.

using System;
namespace ConsoleStringLength
{
 class Program
 {
 static void Main(string[] args)
 {
 string s = "Hello World!";
 Console.WriteLine("No of characters in string s = {0}", s.Length);
 for (int i = 0; i < s.Length; i++)
 {
 Console.WriteLine(s[i]);
 }
 Console.ReadLine();
 }
 }
}

Figure 2.8.10 Using C#’s Length property of a string object to iterate through the
characters of a zero-based string.

public class StringLength {

 public static void main(String[] args) {

String s;

s = "Hello World!";

System.out.println("No of characters in string s = " + s.length());

for (int i = 0; i < s.length(); i++){

System.out.println(s.charAt(i));

}

}

}
Figure 2.8.11 Using Java’s Length property of a string object
to iterate through the characters of a zero-based string.

Institution licence - St Martins School Essex

2.8 String-handling operations

107

Enclosing a character string within double quotes automatically
creates a new String object. String objects are immutable, which
means that once created, their values cannot be changed.

Figure 2.8.13 shows that the use of the Python len function applied to a string variable s,as follows: len(s),
returns the number of characters in the string value "Hello World!" which s contains.

Module StringLength

 Sub Main()

 Dim s As String = "Hello World!"

 Console.WriteLine("No of characters in string s = {0}", s.Length)

 For i As Integer = 0 To s.Length - 1

 Console.WriteLine(s(i))

 Next

 Console.ReadLine()

 End Sub

End Module

Figure 2.8.12 Using VB.NET’s Length property of a string
object to iterate through the characters of a zero-based string.

Figure 2.8.13 Using Python’s len function to obtain the length of a string, s, then iterate
through the characters of this zero-based string.

Institution licence - St Martins School Essex

 2 Programming

108

Substring
A substring is a subset of a string, for example, the substring 'mit'
is a subset of the string 'smith', located between one index, the
StartIndex = 1, and another, the EndIndex = 3 as shown in
Figure 2.8.15.
Figure 2.8.15 shows two ways to identify a substring of the string by

• Index
• Offset

In the index view in Figure 2.8.15, if StartIndex is 1, then the index of the character 'm' is selected in the string
s. In the index view in Figure 2.8.15, if the EndIndex is 3, then the index of the character 't' is selected in the
string s. The substring returned is between index 1 and 3, inclusive, i.e. substring 'mit'.
Suppose a subroutine called SUBSTRING returns a substring of a given string, s. It is called with arguments s,
StartIndex and EndIndex as shown in Table 2.8.1 and the substring returned is assigned to another string
variable, SubOfs. In pseudo-code SUBSTRING(1, 3, 'computer science') evaluates to 'omp' if indexing
starts from 0. Therefore, the output of this pseudo-code is 'omp'.

0 1 2 3 4

s m i t h

Index view

Offset view 0 1 2 3 4
Figure 2.8.15 The string 'smith' and two
ways to identify a substring of the string,
by Index or by Offset

 s ← 'smith'
 StartIndex ← 1
 EndIndex ← 3
 SubOfs ← SUBSTRING(StartIndex, EndIndex, s)
 OUTPUT SubOfs

Table 2.8.1 Pseudo-
code showing a call to
Substring

Program StringLengthOneBased;

{$APPTYPE CONSOLE}

{$R *.res}

Uses

 System.SysUtils;

Var

 s : String;

 i : Integer;

Begin

 s := 'Hello World!';

 Writeln(s);

 Writeln('No of characters in string s = ', Length(s));

 Writeln('Character at index 1 = ', s[1]);

 For i := 1 To Length(s)

 Do Writeln(s[i]);

 Readln;

End.

Figure 2.8.14 Using Pascal/
Delphi’s Length function to obtain
the length of a string, s, then iterate
through the characters of this one-
based string.

Figure 2.8.14 shows that the use of the Pascal/Delphi Length
function applied to a one-based string variable s, as follows:
Length(s), returns the number of characters in the string value
"Hello World!" which variable s contains.

Institution licence - St Martins School Essex

2.8 String-handling operations

109

In the offset view,

• the first character of the substring, 'm' is reached by an offset
of one character from the beginning of the string s as shown
in Figure 2.8.16 - StartOffset is 1.

• the last character of the substring, 't' is included by an offset
of four characters from the beginning of the string s as
shown in Figure 2.8.16 (an offset of 0 is the first character
's' - EndOffset is 4. A slice can then occur between 1 and
4 as shown in Figure 2.8.16 to obtain the substring.

We can use StartSlice and EndSlice instead of StartOffset and EndOffset, to make it clearer that
the selected substring is a slice through the string, i.e. StartSlice = 1, EndSlice = 4.

Table 2.8.2 shows examples of how a substring can be obtained in Pascal/Delphi, C#, Python, Java and VB.NET.
Python has no substring subroutine. Instead, we use slice syntax to get parts of existing strings.

Pascal/Delphi C#
Program SubstringExample;
{String indexing starts at 1}
Var
 s, SubOfs : String;
 StartIndex, Count : Integer;
Begin
 s := 'smith';
 StartIndex := 2;
 Count := 3;
 SubOfs := Copy(s,StartIndex,Count);
 Writeln(SubOfs);
 Readln;
End.
{Copy treats zero-based strings as if
they are 1-based in Delphi with zero-
based compiler option ON}

using System;
namespace SubstringExample
{
 class Program
 {
 static void Main(string[] args)
 {
 String s = "smith";
 int startIndex = 1;
 int endIndex = 3;
 String subOfs = s.Substring(startIndex,endIndex);
 Console.WriteLine("Substring is {0}",subOfs);
 Console.ReadLine();
 }
 }
}

Python Java
s = "smith"
start_slice = 1
end_slice = 4
sub_of_s = s[start_slice:end_slice]
print("Substring is ", sub_of_s)

public class SubstringExample {
 public static void main(String[] args) {
 String s = new String("smith");
 int startSlice = 1;
 int endSlice = 4;
 String subOfs = s.substring(startSlice,endSlice);
 System.out.println("Substring is " + subOfs);
 }
}

 VB.Net

Module Module1
 Sub Main()
 Dim s As String = "smith"
 Dim startIndex As Integer = 1
 Dim endIndex As Integer = 3
 Dim subOfs = s.Substring(startIndex, endIndex)
 Console.WriteLine("Substring is {0}", subOfs)
 Console.ReadLine()
 End Sub
End Module

Table 2.8.2 Examples of
how a substring can be

obtained in Pascal/Delphi,
C#, Python, Java and

VB.NET

s m i t h

Offset view

Start of slice End of slice

0 1 2 3 4

Figure 2.8.16 Taking a slice of the
string 'smith' between
StartOffset = 1 and EndOffset = 4

Institution licence - St Martins School Essex

 2 Programming

110

Position
Sometimes we may wish to discover if a given substring is present within a given string. For this we use a position
function which returns the index within the given string of the first occurrence of the substring, e.g.in pseudo-
code POSITION('hello', 'e') returns 1 because the index of 'e' is 1 in 'hello', if indexing starts at 0. If
the substring is not present in the given string then a value is returned outside the index range, e.g. -1. Table 2.8.3
shows how this can be done in Pascal/Delphi, C#, Python, Java and VB.NET.

Concatenation
The concatenation of strings is the operation of joining character
strings end-to-end.
For example, the concatenation of "john" and "smith" is "johnsmith".
The concatenation of "john" and " " and "smith" is "john smith".
The most common way of concatenating strings is to use the '+'
operator.
For example in Java:

String a = "Hello";
String b = " World!";
String c = a + b;
System.out.print(c);

The concatenation operator '+' is common to all the programming
languages covered in this chapter.
Character → character code
Sometimes an operation needs to be carried out on a single character value, e.g. 'A', or a variable of character data
type, e.g. Ch. In pseudo-code CHAR_TO_CODE('A')evaluates to 65 using ASCII/Unicode.
In Pascal and Delphi, the Char data type is used to create a single character variable and the Ord function converts
a character value to its character code as shown in Figure 2.8.17.

Pascal/
Delphi

Position := AnsiPos('ello', 'Hello World!');
If Not (Position = 0)
 Then Writeln('String contains ello')
 Else Writeln('Not found');

The AnsiPos function finds the position
of one string 'ello' within another 'Hello
World'.
If the string is not found, 0 is returned.
 The search is case sensitive.

C#

string s = "Hello World!";
if (s.IndexOf("ello") != -1)
 {
 Console.WriteLine("String contains ello");
 }

Function IndexOf returns the index of a
substring. First it scans the String. And if
the substring is not found, it returns -1.

VB.NET

Dim s As String = "Hello World!"
If Not s.IndexOf("ello") = -1 Then
 Console.WriteLine("String contains ello")

Function IndexOf returns the index of a
substring. First it scans the String. And if
the substring is not found, it returns -1.

Java

String s = "Hello World!";
if (s.indexOf("ello") >= 0){

 System.out.println(" String contains ello")

}

Function indexOf returns the index within
this string of the first occurrence of the
specified substring. If it does not occur as a
substring, -1 is returned.

Python

str1 = "Hello World!"
str2 = "ello"
if (str1.find(str2) != -1):
 print ("String contains ello")

Function find returns the index within
this string of the first occurrence of the
specified substring. If it does not occur as a
substring, -1 is returned.

Table 2.8.3 Examples of searching for a substring within a given string in Pascal/Delphi, C#, Python, Java and
VB.NET

Program CharacterExample;
{$APPTYPE CONSOLE}
{$R *.res}
Uses
 System.SysUtils;
Var
 Ch : Char;
Begin
 Ch := 'A';
 Writeln(Ch);
 Writeln(Ord(Ch));
 Readln;
End.

Figure 2.8.17 The Char data type and
the Ord function in Pascal/Delphi which
converts a character to its character code.

Institution licence - St Martins School Essex

2.8 String-handling operations

111

In VB.NET, a character variable is declared using the Char data
type as shown in Figure 2.8.18. The Asc function returns the
character code for a given character value.
In Java, a character variable is declared using the char data type
and to convert a character value to its character code in Java, data
type casting is used as shown in Figure 2.8.19 where (int) ch
casts the value contained in ch to a value of type int.

The char keyword is used in C# to declare an instance of the
System.Char structure that the .NET Framework uses to
represent a Unicode character. The value of a
Char object is a 16-bit numeric (ordinal) value.
To convert a character to its character code in
C#, data type casting is used as shown in Figure
2.8.20.
Figure 2.8.21 shows the use of the ord function
in Python 3.4 to convert a character to its
character code.

Character code → character
In pseudo-code CODE_TO_CHAR(97) evaluates
to 'a' using ASCII/Unicode. Table 2.8.4 shows
how to convert from character code to character
in C#, Java, Pascal/Delphi, Python and VB.NET
and display the result in the console window. C#
and Java use data type casting whilst Pascal/Delphi
and VB.NET use a function, Chr,and Python a
function chr.

Module CharacterExample
 Sub Main()
 Dim ch As Char = "A"
 Console.WriteLine(ch)
 Console.WriteLine(Asc(ch))
 Console.ReadLine()
 End Sub
End Module

Figure 2.8.18 The Char data type and the
Asc function in VB.NET.

public class CharacterExample {

 public static void main(String[] args) {

 char ch = 'A';

 System.out.println(ch);

 System.out.println((int) ch);

 }

Figure 2.8.19 The char data type in Java and the use of data
type casting, (int) to convert a character to its character code.

causes data type cast from char to int

using System;

namespace CharExample

{

 class Program

 {

 static void Main(string[] args)

 {

 char ch = 'A';

 Console.WriteLine(ch);

 Console.WriteLine((int) ch);

 Console.ReadLine();

 }

 }

}

Figure 2.8.20 The char
data type in C# and the
use of data type casting,
(int), to convert a
character to its character
code.

causes data type cast from char to intFigure 2.8.21 Using the ord function in Python
3.4 to convert a character to its character code.

Language Code
C# Console.WriteLine((char)65);

Java System.out.println((char)65);

Pascal/Delphi Writeln(Chr(65));

Python print(chr(65))

VB.Net Console.WriteLine(Chr(65))

Table 2.8.4 Code to convert character code to character in
C#, Java, Pascal/Delphi, Python and VB.NET and display

the result in the console window.

Institution licence - St Martins School Essex

 2 Programming

112

String conversion operations
String to integer
In pseudo-code STRING_TO_INT('21') evaluates to integer 21.

C#
A string can be converted to a number using methods in the Convert class or by using the TryParse method
found on the various numeric types (int, long, float, etc). Convert.ToInt32 converts an integer written in string
form, e.g. "-125" to a 32-bit integer value, e.g. -125.

 Console.WriteLine("String -125 has integer value {0}", Convert.ToInt32("-125"));

There are also other methods that may be used when converting a string representing a numeric value:

• Parse: If the string is not in a valid format, Parse throws an exception. Int32.Parse("-125")
returns the 32-bit integer value -125. Table 2.8.5 shows an example of this.

• TryParse: In the example in Table 2.8.5, TryParse returns true if the conversion succeeded, storing
the result in anotherNumber, and false if it fails.

Both methods ignore whitespace at the beginning and at the end of the string, but all other characters must be
characters that form the appropriate numeric type (int, long, ulong, float, decimal, etc). Any whitespace within the
characters that form the number causes an error.
Java
The Integer.parseInt(String s) static method parses the string argument s as a signed decimal integer
and returns an int value as shown in Table 2.8.5. The resulting value is not an instance of Java’s Integer class but
just a primitive int value.

The Integer.valueOf(String s) static method will return an Integer object holding the value of the
specified String s argument.

VB.NET
A string can be converted to a number using methods in the Convert class or by using the TryParse method
found on the various numeric types (int, long, float, etcetera). Convert.ToInt32 converts an integer written in
string form, e.g. "-125" to a 32-bit integer value, e.g. -125.

Console.WriteLine("String -125 has integer value {0}", Convert.ToInt32("-125"))

There are also other methods that may be used when converting a string representing a numeric value:

• Parse: If the string is not in a valid format, Parse throws an exception.
Int32.Parse("-125") returns the 32-bit integer value -125. Table 2.8.5 shows an example of this.

• TryParse: In the example in Table 2.8.5, TryParse returns true if the conversion succeeded, storing
the result in anotherNumber, and false if it fails.

Python
The Python standard built-in function int() converts a string into an integer value. It is called with an argument
which is the string form of an integer. It returns the integer that corresponds to the string form of the integer.

Table 2.8.5 shows an example of the use of int().

Pascal
The StrToInt function converts an Integer string such as '-125' to an integer as shown in Table 2.8.5.

Delphi
The StrToInt function converts an Integer string such as '-125' to an integer.

Institution licence - St Martins School Essex

2.8 String-handling operations

113

It is also possible to use Parse and TryParse as follows:
AnotherNumber := System.Int32.Parse('-125');

Writeln(AnotherNumber);

If System.Int32.TryParse('-125', YetAnotherNumber)

 Then Writeln(YetAnotherNumber)

 Else Writeln('String could not be parsed');

Table 2.8.5 shows examples of the use of each.

Language Code
C# Console.WriteLine("String -125 has integer value {0}",

 Convert.ToInt32("-125"));

int number = Int32.Parse("-125");

Console.WriteLine(number);

int anotherNumber;

if (Int32.TryParse("-125", out anotherNumber))

 Console.WriteLine(anotherNumber);

else Console.WriteLine("String could not be parsed.");

Java int number = Integer.parseInt("-125");

System.out.println("The number is: " + number);

int anotherNumber = Integer.valueOf("-125");

System.out.println("The number is: " + anotherNumber);

Pascal Number := StrToInt('-125');

Writeln(Number);

Delphi Var Result, YetAnotherNumber : Integer;

............

Number := StrToInt('-125');

Writeln(Number);

AnotherNumber := System.Int32.Parse('-125');

Writeln(AnotherNumber);

If System.Int32.TryParse('-125', YetAnotherNumber)

 Then Writeln(YetAnotherNumber)

 Else Writeln('String could not be parsed');

Python print(int("-125"))

VB.NET Console.WriteLine("String -125 has integer value {0}",

 Convert.ToInt32("-125"))

Dim number As Integer = Int32.Parse("-125")

Console.WriteLine(number)

Dim anotherNumber As Integer

If Int32.TryParse("-125", anotherNumber) Then

 Console.WriteLine(anotherNumber)

Else Console.WriteLine("String could not be parsed")

End If

Table 2.8.5 Code examples in C#, Java, Pascal, Delphi, Python and VB.NET which demonstrate how to convert
an integer in string form to an integer value

Institution licence - St Martins School Essex

 2 Programming

114

String to real
In pseudo-code STRING_TO_REAL('16.3') evaluates to the real 16.3.
C#
A string can be converted to a number using methods in the Convert class or by using the TryParse method
found on the various numeric types (int, long, float, etc). Convert.ToSingle converts a number written in
string form, e.g. "-125.5" to a single precision floating point value, e.g. -125.5. See below and Table 2.8.6.
Console.WriteLine("String -125.5 has float value {0}", Convert.ToSingle("-125.5"));

The precision of a single floating point number is 7 decimal digits.
There are also other methods that may be used when converting a string representing a numeric value:

• Parse: If the string is not in a valid format, Parse throws an exception.
float.Parse("-125.5") returns a single precision floating point value -125.5. Table 2.8.6 shows an
example of this.

• TryParse: In the example in Table 2.8.6, TryParse returns true if the conversion succeeded, storing
the result in anotherNumber, and false if it fails.

Both methods ignore whitespace at the beginning and at the end of the string, but all other characters must be
characters that form the appropriate numeric type (int, long, ulong, float, decimal, etc). Any whitespace within the
characters that form the number cause an error.
Java
The Float.parseFloat(String s)static method parses the string argument s as a signed number and
returns a floating point value as shown in Table 2.8.6.

The Float.valueOf(String s) static method will return a Float object holding the float value represented
by the argument string s.
VB.NET
A string can be converted to a number using methods in the Convert class or by using the TryParse method
found on the various numeric types (int, long, float, etcetera). Convert.ToSingle converts a number written
in string form, e.g. "-125.5" to a single precision floating point value, e.g. -125.5. See below and Table 2.8.6.

Console.WriteLine("String -125.5 has float value {0}", Convert.ToSingle("-125.5"))

The precision of a single floating point number is 7 decimal digits.
There are also other methods that may be used when converting a string representing a numeric value:

• Parse: If the string is not in a valid format, Parse throws an exception.
float.Parse("-125.5") returns a single precision floating point value -125.5. Table 2.8.6 shows an
example of this.

• TryParse: In the example in Table 2.8.6, TryParse returns true if the conversion succeeded, storing
the result in anotherNumber, and false if it fails.

Both methods ignore whitespace at the beginning and at the end of the string, but all other characters must be
characters that form the appropriate numeric type (int, long, ulong, float, decimal, etc). Any whitespace within the
characters that form the number causes an error.

Python
The Python standard built-in function float() converts a string into a floating point value. It is called with an
argument which is the string form of a number. It returns the floating point value that corresponds to the string
form of the number.
Table 2.8.6 shows an example of the use of float().

Institution licence - St Martins School Essex

2.8 String-handling operations

115

Pascal
The StrToFloat function converts a number string such as '-125.5' to a floating point value as shown in Table
2.8.6.
Delphi
The StrToFloat function converts a number string such as '-125.5' to a floating point value.
It is also possible to use Parse and TryParse as follows:

AnotherNumber := System.Single.Parse('-125.5');

Writeln(AnotherNumber);

If System.Single.TryParse('-125.5', YetAnotherNumber)

 Then Writeln(YetAnotherNumber)

 Else Writeln('String could not be parsed');

where AnotherNumber and YetAnotherNumber are single precision floating point variables declared as
follows Var

 AnotherNumber, YetAnotherNumber : Single;

Table 2.8.6 shows examples of the use of each. To use double precision substitute Double for Single in the code
above.

Language Code
C# Console.WriteLine("String -125.5 has float value {0}",

 Convert.ToSingle("-125.5"));
float number = float.Parse("-125.5");
Console.WriteLine(number);
float anotherNumber;
if (float.TryParse("-125.5", out anotherNumber))
 Console.WriteLine(anotherNumber);
else Console.WriteLine("String could not be parsed.");

Java float number = Float.parseFloat("-125.5");
System.out.println("The number is: " + number);
float anotherNumber = Float.valueOf("-125.5");
System.out.println("The number is: " + anotherNumber);

Pascal Writeln(StrToFloat('-125.5'):8:2);

Delphi Var Result, YetAnotherNumber : Single;
............
Writeln(StrToFloat('-125.5'):8:2);
AnotherNumber := System.Single.Parse('-125.5');
Writeln(AnotherNumber:8:2);
If System.Single.TryParse('-125.5', YetAnotherNumber)
 Then Writeln(YetAnotherNumber:8:2)
 Else Writeln('String could not be parsed');

Python print(float("-125.5"))

VB.NET Console.WriteLine("String -125.5 has float value {0}",
 Convert.ToSingle("-125.5"))
Dim Number As Single = Single.Parse("-125.5")
Console.WriteLine(Number)
Dim AnotherNumber As Single
If (Single.TryParse("-125.5", AnotherNumber)) Then
 Console.WriteLine(AnotherNumber)
Else Console.WriteLine("String could not be parsed.")
End If

Table 2.8.6 Code
examples in C#, Java,
Pascal, Delphi, Python
and VB.NET which
demonstrate how to
convert a number in
string form to a floating
point value

Institution licence - St Martins School Essex

 2 Programming

116

Integer to string
In pseudo-code INT_TO_STRING(16) evaluates to the string '16'.

C#
An integer can be converted to its equivalent string form using Convert.ToString, e.g. -125 to its string
representation, e.g. "-125". See below and Table 2.8.7.

Console.WriteLine(Convert.ToString(-125));

Java
The Integer class has a static method that returns a String object representing the specified int parameter, e.g.

 System.out.println(Integer.toString(-125));

as shown in Table 2.8.7.
VB.NET
An integer can be converted to its equivalent string form using Convert.ToString, e.g. -125 to " -125" as
shown below and in Table 2.8.7.

Console.WriteLine(Convert.ToString(-125))
Python
The Python standard built-in function str() converts a number to its equivalent string form. It is called with a
number argument, e.g. -125 and returns the equivalent string form "-125" as shown in Table 2.8.7.
Pascal/Delphi
The IntToStr function converts an integer such as -125. to its equivalent string form '-125' as shown in Table
2.8.7.

Real to string
In pseudo-code REAL_TO_STRING(16.3) evaluates to the string '16.3'.
C#
A number stored in floating point form can be converted to its equivalent string form using
Convert.ToString, e.g. -125.5 to its string representation, e.g. "-125.5". See below and Table 2.8.8.

Console.WriteLine(Convert.ToString(-125.5));
Java
The Float and Double classes each have a static method that returns a String object representing the
specified Float or Double parameter, e.g.

System.out.println(Float.toString(-125.5f));

System.out.println(Double.toString(-125.5));

as shown in Table 2.8.8.

Language Code
C# Console.WriteLine(Convert.ToString(-125));

Java System.out.println(Integer.toString(-125));
String numberString = String.valueOf(-125);
System.out.println(numberString);

Pascal/Delphi Var
 NumberString : String;
.......................
NumberString := IntToStr(-125);
Writeln(NumberString);

Python print(str(-125))

VB.NET Console.WriteLine(Convert.ToString(-125))

Table 2.8.7 Code examples in C#, Java, Pascal, Delphi, Python and VB.NET which demonstrate how to convert
an integer to an equivalent string form

Institution licence - St Martins School Essex

2.8 String-handling operations

117

Java has IEEE 754 single and double precision types supported by keywords:

float f = -125.5f; // 32 bit float, note f suffix
double d = -125.5d; // 64 bit float, suffix d is optional

Alternatively, we may use String.valueOf(float f). If a float value, e.g. -125.5, is passed to this method as
an argument, then the string representation of -125.5 is returned, i.e. "-125.5".

float number = -125.5f;

String numberString = String.valueOf(number);
VB.NET
A number stored in floating point form can be converted to its equivalent string form using
Convert.ToString, e.g. -125.5 to " -125.5" as shown below and in Table 2.8.8.

Console.WriteLine(Convert.ToString(-125.5))
Python
The Python standard built-in function str() converts a number with a fractional part to its equivalent string
form. It is called with a number argument, e.g. -125.5 and it returns the equivalent string form "-125.5" as shown
in Table 2.8.8.
Pascal/Delphi
The FloatToStr function converts a number stored in floating point form such as -125.5 to its equivalent string
form '-125.5' as shown in Table 2.8.8.

Language Code
C# Console.WriteLine(Convert.ToString(-125.5));

Java System.out.println(Float.toString(-125.5f));
System.out.println(Double.toString(-125.5));
float number1 = -125.5f;
String numberString1 = String.valueOf(number1);
System.out.println(numberString1);
double number2 = -125.5;
String numberString2 = String.valueOf(number2);
System.out.println(numberString2);

Pascal/Delphi Var
 NumberString : String;
.......................
NumberString := FloatToStr(-125.5);
Writeln(NumberString);

Python print(str(-125.5))

VB.NET Console.WriteLine(Convert.ToString(-125.5))

Table 2.8.8 Code examples in C#, Java, Pascal, Delphi, Python and VB.NET which demonstrate how to convert
a floating point value to an equivalent string form

Programming tasks
Write a program which takes as input a string and prints out the number of characters in it.

Write a program which takes as input a word and checks if the first and last letters of the word are the
same. The program should print either "The first and last letters are the same" or "The first and last letters
are different".

Write a program which takes as input 2 words and prints the word made from the last 3 letters of the first
word and the first 3 letters of the second word.

1

2

3

Institution licence - St Martins School Essex

 2 Programming

118

Programming tasks
Write a program which takes as input a sentence and calculates how many words are in the sentence. The

program should print this number (with appropriate message). Assume a word ends with a space unless it is
the last word in the sentence, a sentence ends with a full stop.

Write a program which inputs two words, a master word and a test word. The program should check
whether or not the test word appears anywhere in the master word and then print an appropriate message.
For example "THE" appears inside the word “STRENGTHEN” but not inside "STEALTH". The program
should first check that the test word is shorter than the master word; if not it should print the message
"Test word too long" and request a new test word.

Write a program which takes as input a pair of words and prints a third word made from the letters
at the end of the first word if they are the same as the letters at the beginning of the second word, e.g.
IGNORANT and ANTLER are input, the output is ANT, otherwise the program should request another
pair of words.

Write a program which takes as input a word and prints out a new word made from reversing the order of
the letters in the input word, e.g. input word = "BEAR", output word = "RAEB".

Write a program which takes as input a pair of words and checks if one is an anagram of the other. The
program should output the message "ANAGRAM" if it is and the message "NOT AN ANAGRAM" if it
isn't.

Write a program which takes as input a word and determines whether or not the word is a palindrome.
(A palindrome is a word that reads the same forwards and backwards. E.g. ROTOR.)
Test your program on the following palindromes DAD, NOON, MADAM, REDDER, ROTOVATOR.

Write a program which takes a single word containing only upper case letters of the alphabet as input, and
outputs an encrypted version of the word using the following simple encryption algorithm:
Character code for "A" + (((Character code of letter to encrypt - character code for "A") + 13) MOD 26)

4

5

6

7

8

9

10

Questions
The variables r, s and t in Figure 2.8.22 are assigned string values.
Tick the box which shows the concatenation of r and s.

The characters of a string may be
accessed by index. Assuming indexing
starts at 1, r[4] is the character 'd'.
Tick the boxes which correspond
to the three true statements in the
table.

1

Figure 2.8.22

r ← 'goodness'

s ← 'gracious'

t ← 'me'

Concatenation of r and s Tick one box
rs

goodness gracious

goodnessgracious

Statement Tick three boxes
LENGTH(r) > LENGTH(s)

POSITION('ness', r) returns 5

r[7] = s[8]

s[LENGTH(r) - LENGTH(t)] = 'i'

r[LENGTH(r) - LENGTH(t) + 1] = 's'

2

Institution licence - St Martins School Essex

2.8 String-handling operations

119

Questions
Develop a subroutine called Prefix, using either pseudo-code or a flowchart, which takes two strings

called wordstr and prefixstr as parameters and determines whether the string prefixstr matches the
beginning of wordstr.
For example using the strings:

wordstr ← 'goodness'

prefixstr ← 'good'

The string 'good' matches the beginning of string wordstr so Prefix(wordstr, prefixstr) should
return true. The first character 'g' of 'good' matches the first character of 'goodness', the next
character 'o' of 'good' matches the next character of 'goodness' and so on.
The string 'food' does not match the beginning of string wordstr so Prefix(wordstr, prefixstr)
should return false. The first character 'f' of 'food' does not match the first character of
'goodness'.
Your subroutine should:
• work for strings of all lengths greater than 0
• return false if the length of prefixstr is greater than the length of wordstr.
The start of your subroutine has been completed for you.

SUBROUTINE Prefix(wordstr, prefixstr)

Some programming languages support a string handling subroutine, Substring, (or its equivalent) which
returns a substring of a given string.
Substring takes three parameters, aString, startindex, and endindex as follows:

Substring(aString, startindex, endindex)

For example, assuming indexing of strings starts from 0
Substring('goodness', 0, 4) returns 'good'.

Alter the body of your pseudo-code answer in question 3 for subroutine Prefix so that it uses subroutine
Substring.

The following string conversion functions are available:
StrToInt(aString) - converts a numeric string aString to its integer equivalent, e.g.
StrToInt('125') returns 125.
IntToStr(n) - converts an integer n to its string equivalent, e.g. IntToStr(125) returns '125'.
RealToStr(n) - converts a real number n to its string equivalent, e.g. RealToStr(125.5) returns
'125.5'.
StrToReal(aString) - converts a numeric string aString to its real number equivalent, e.g.
StrToReal('125.5') returns 125.

Complete the table by filling each box with what is returned from each function call.

3

4

Function call Returns
IntToStr(-459)

StrToInt('-563')

RealToStr(0.561)

StrToReal('34.998')

IntToStr(StrToInt('78'))

5

Institution licence - St Martins School Essex

 2 Programming

120

In this chapter you have covered:

 ■ Using and becoming familiar with:
• length
• position
• substring
• concatenation
• character → character code
• character code → character
• string conversion operations

 � string to integer
 � string to real
 � integer to string

 � real to string.

Questions
A function Position is used to discover if a given substring is present within a given string.
Position returns the index within the given string of the first occurrence of the substring.
If the substring is not present in the given string then -1 is returned.
For example, the function call Position('ello', 'Hello World!') returns 1.
Revisit question 3 and rewrite the body of this subroutine so that it uses subroutine Position.

The function Chr converts a character to its equivalent character code.
The function Ord converts a character code to its equivalent character.
The character codes for the letter characters 'A', 'B', 'C', ... 'X', 'Y', 'Z' of the alphabet have corresponding
character codes, 65, 66, 67, ...88, 89, 90.
Complete the table with the result returned by each function call.

6

Function call Result
Chr(65)

Ord('B')

Chr(Ord('C') - 1)

Ord(Chr(89))

Chr(Ord('A') + 23)

7

Institution licence - St Martins School Essex

121

Learning objectives:

 ■ Be able to use random number
generation.

 2 Fundamentals of programming

2.9 Programming
 ■ 2.9 Random number generation in a programming language

Random number generation
Random numbers
An algorithm which generates a random, or apparently random, sequence of
numbers is called a random number generator.
For example, suppose we require a method for selecting an integer at random
from the set of integers 1, 2, 3, .., N.
For small values of N simple mechanisms exist.
For example:
• for N = 2 we can toss a coin
• for N = 6 we can roll a six-sided die - one of the die shown in Figure 2.9.1
• for N = 12 we can roll a 12-sided die
• for N = 36 we can use a roulette wheel (ignoring 0 on wheel).

Every number in the chosen set of integers 1, 2, 3, .., N, is equally likely.
Statistically, each number from the set should appear on average the same number of times in a long sequence
generated by coin tossing or dice rolling.
The sequence generated which satisfies these two conditions is called a random sequence.
Pseudorandom numbers
Most computer generated random numbers use pseudorandom number generators (PRNGs) which are algorithms
that can automatically create long runs of numbers with good random properties but eventually the sequence
repeats.
This kind of random number is adequate for many situations, e.g. computer simulations and cryptography.
However, pseudorandom generated number sequences are not as random as coin tosses and dice rolls or random
sequences generated from physical phenomena such as electrical noise.
Pseudorandom number generator algorithms generate a random sequence which is completely determined by a
shorter initial value known as a seed value or key.
As a result, the entire seemingly random sequence can be reproduced if the seed value is known.
Randomizing the seed
Although it is possible to set the seed manually, using the same seed will generate the same pseudorandom sequence
of numbers.
However, the choice of seed can be randomized. One method relies upon sampling the computer’s system clock
another chooses from a small set of truly random numbers.
For example, in Python one would call the procedure random.seed(None)to use the system clock to generate a
randomised seed. Next, function random.random() is called. It returns the next random floating point number
in the interval [0.0, 1.0). "[" means 0.0 is included in the range. The symbol ")" means 1.0 is excluded.
For example, in one call to random.seed(None) followed by random.random(), 0.40488239522745517
was returned.
However, the pseudorandom number generated by the call random.seed(1)followed by random.random(),
produced 0.13436424411240122 as the first number in the sequence every time and the same sequence of numbers
on calling random.random()again and again.

Figure 2.9.1 Rolling dice

Institution licence - St Martins School Essex

 2 Fundamentals of programming

122

Random number generators in programming languages
Table 2.9.1 shows pseudorandom number generator subroutines for Python, Java, Free Pascal, Delphi, C# and
VB.NET.

Language Pseudorandom number generator subroutine Explanation

Python

random.random()

random.randint(a, b)

random.randint(N)

Returns the next random floating point
number in the interval [0.0, 1.0)
Returns a random integer N such that
 a <= N <= b
Returns Random integer in interval
[0,N].

Java

import java.util.Random
public class PRSG {
 public static void main(String[] args){
 System.out.println(Math.random())
 }
}

Math.random()

Returns the next pseudorandom, double
value in the interval [0.0, 1.0).

Java

public class PRSG {
 public static void main(String[] args){
 Random pRSG = new Random();
 System.out.println(pRSG.nextInt(10));
 }
}

Returns the next pseudorandom, int
value in the interval [0, 10)

Free
Pascal

Uses
 SysUtils;
Var
 Hours, Mins, Secs, Millisecs : Word;
Begin
 Randomize;
 Writeln(Random :20:18);
 DecodeTime(Now, hours, mins, secs, milliSecs);
 RandSeed := milliSecs;
 Writeln(Random :20:18);
 Writeln(Random(10));

Randomize changes the seed used to
generate its range of pseudo random
numbers.
The RandSeed LongInt variable can
be set directly.
Random returns a random real
number in the interval [0.0, 1.0)
Random(N) returns a random
number in LongInt integer interval
[0, N).

Delphi

Randomize;
Writeln(Random :20:18);
DecodeTime(Now, hours, mins, secs, milliSecs);
RandSeed := milliSecs;
Writeln(Random :20:18);
Writeln(Random(10));

Random returns a random real number
in range [0.0, 1.0)
Random(N) returns a random number
in LongInt integer interval [0, N).

C#

Random n = new Random();
Console.WriteLine("Randomly generated number in range
[0.0, 1.0) : {0}", n.NextDouble());
Console.WriteLine("Randomly generated number in range
[0, 10) : {0}", n.Next(10));

new Random() initializes a new
instance of the Random class, using a
time-dependent default seed value.
NextDouble() gets next double
random no in interval [0.0, 1.0).
Next(N)gets next integer random no
in interval [0,N).

VB.NET

Dim n As New Random()

Console.WriteLine("Randomly generated number in range

[0.0, 1.0) : {0}", n.NextDouble())

Console.WriteLine("Randomly generated number in range

[0, 10) : {0}", n.Next(10))

new Random() initializes a new
instance of the Random class, using
a time-dependent default seed value.
NextDouble() gets next double
random no.
Next(N)gets next integer random no
in interval [0,N).

Table 2.9.1 Shows pseudorandom number generator subroutines for the languages

Institution licence - St Martins School Essex

2.9 Random number generation in a programming language

123

Table 2.9.2 shows how the seed value may be set in Python, Java, Free Pascal, Delphi, C# and VB.NET.

In this chapter you have covered:

 ■ Using random number generation in a programming language.

Language Seed setting subroutines Explanantion

Python
import random
random.seed(None)
random.seed(seedvalue)

random.seed(None), None means system clock sets seed.
The seed is seedvalue, e.g. 1.

Free Pascal Randomize
Initializes the random number generator by giving a value to
Randseed LongInt variable, calculated with the system clock.

Delphi

Randomize

DecodeTime(now, hours,
mins, secs, milliSecs);
RandSeed := milliSecs;

Randomize changes the seed used to generate its range of 232
pseudo random numbers.

The RandSeed LongInt variable can be set directly.

C# Random(N)
Initializes a new instance of the Random class, using the specified
seed value N of type Int32.

VB.NET Random(N)
Initializes a new instance of the Random class, using the specified
seed value N of type Int32.

Table 2.9.2 Shows seed setting for Python, Free Pascal, Delphi, C# and VB.NET

Questions
What is the role of a seed in the generation of pseudorandom number sequences?

A certain online Poker site found that a group of players was winning every time against the computer-
generated poker hands. On investigation, it was discovered that the group was familiar with the
programming language used to program the poker game and had also worked out how to obtain the
uptime of the server.
Explain one way this group could have accurately predicted the computer-generated poker hands.

1

2

Programming tasks
Write a program to generate and display 10 random floating point numbers
in the interval [0.0, 1.0), i.e. 0.0 ≤ x < 1.0.

Write a program to generate and display 10 random integers in interval [0, 10), i.e. 0 ≤ x < 10.

1

2

Did you know?
The history of pseudorandom number
generator algorithms began during the
Manhattan project in the Second World War
when John von Neumann devised the middle-
square method of generating pseudorandom
number sequences - the method was marked
Top Secret initially. A quick way of generating
random numbers was needed for simulations
for the nuclear bomb programme.

Information
AQA pseudo-code:
RANDOM_INT(IntExp, IntExp)

For example, RANDOM_INT(3, 5) will randomly

generate 3, 4 or 5.

Institution licence - St Martins School Essex

124

 2 Programming

2 Programming
 ■ 2.10a Subroutines (procedures/functions)

Concept of subroutines
A subroutine is a named self-contained block of instructions, e.g.
drawsquare. By encapsulating and naming a block of instructions in a
program it becomes possible to call the block from other parts of the program.
This is very useful in situations where the same block of instructions or action
or calculation needs to be repeated in multiple places in a program.
A program that references the subroutine drawsquare by name at
a particular place in the program flow is said to call the subroutine
drawsquare. It is sufficient to just use its name, drawsquare, to cause its
block of instructions to execute.
Subroutines have been covered in depth in Chapter 2.2.
A subroutine may contain its own variable, type, label and constant
declarations. A subroutine may also define subroutines which it may use and
it may use subroutines defined elsewhere (usually library or language-defined
subroutines).

A subroutine is a named 'out of line' block of code that may be executed (called) by simply writing its name
in a program statement.
This is illustrated in Figure 2.10a.1 which shows the control structure of a program block consisting of program
statements S1, S2, S3, a selection statement (shown as ?) controlling execution of two statements S4 and S5. This
selection statement is followed by a loop which controls a block of statements S.
A procedure T consists of program statements S1, S2, S3 (different ones from the program block statements) and a
loop controlling a block of statements S (also different from the program block S).

Learning objectives:
 ■ Understand the concept of
subroutines
 ■ Explain the advantages of
using subroutines in programs
 ■ Describe the use of parameters
to pass data within programs
 ■ Use subroutines that return
values to the calling routine
 ■ Know that subroutines may
declare their own variables,
called local variables, and that
local variables usually:

• only exist while the
subroutine is executing

• are only accessible within
the subroutine.

 ■ Use local variables and
explain why it is good practice
to do so.

S4

S1
S2
S3

?

S

S5

?

Program Begin

End

Procedure T

S1
S2
S3

Begin

End

?

S

Program statement S1 is a call to procedure T.
Control passes to procedure T

On finishing its execution, procedure T
returns control to statement S2

Figure 2.10a.1 In line flow of control to out of line flow of control to a named out of line block of code

Institution licence - St Martins School Essex

 2 Programming

125

The flow of control in the program block is in line, forwards from the beginning to the end, except when
statement S1 is encountered. This statement transfers control 'out of line’ to procedure T.
Flow of control in procedure T is from its beginning to its end.
On reaching the end of T, control is transferred back to the program block.
Execution is resumed in the program block at statement S2, the statement immediately following S1, where the call
to T occurred. If T was a function then control would be returned to statement S1 along with the function’s result.
Procedure T is a subroutine.
In Pascal, statement S1 which is a call to a procedure T which doesn’t use parameters is simply T;
In VB.NET, the call to a procedure T which doesn’t use parameters would be T().

Advantages of using subroutines in programs
Without programming language support for subroutines (procedures and functions), all programming would
consist of blocks of program instructions all in a line with unnecessary repetition of instructions.
This would make even programs of modest size

• difficult to understand

• difficult to debug.

Removing blocks of instructions from the program block and placing these in 'out of line', named subroutine
blocks (Figure 2.10a.1) separate from the control flow of the program block, reduces the intellectual demand
needed to understand what the program does.

• The program block is reduced in length because where it relies on the instructions in subroutines these are
referenced by a short and descriptive name (ideally).

• If subroutines are self-contained they can be worked on separately. This is useful when writing and
debugging software.

• In software projects involving a team of developers, different subroutines can be given to different
members of the team to write and debug.

• The more self-contained (independent) the subroutine, the easier it is to write and debug without having
to understand the program block in which it is called.

• Subroutines written for one program may be reused in a different program. The more self-contained they
are the easier it is to do this.

• If a subroutine is particularly useful, it may be added to a library of subroutines which can be imported
into any program which needs them.

Questions
What is meant by "a subroutine is a named 'out of line' block of code that may be executed by simply
writing its name in a program statement"?

1

Questions
State and explain three advantages of using subroutines in programs.2

Institution licence - St Martins School Essex

2.10a Subroutines (procedures/functions)

126

Using parameters to pass data within
programs
A subroutine parameter is one way of passing data
into and out of a subroutine.
When a subroutine is called, any data passed to it
via the subroutine parameter mechanism is copied
into the memory area reserved for subroutine
formal parameters as shown in the memory
schematic in Figure 2.10a.3.
There are two ways that data may be passed via
the subroutine parameter mechanism into a
subroutine:

• Call by value
• Call by reference/Call by address

We illustrate both with data stored in two program
variables, x and y.
The variable name x maps to value 25 and the
variable name y maps to 17.
We can express this as follows where the symbol ↦
means ‘maps to’

x ↦ 25 and y ↦ 17

This mapping is set up at the point in time when
statements

x ← 25

y ← 17

are executed in the program shown in Figure 2.10a.2.
The subroutine memory area shows two variables, r
and s, called formal parameters of the subroutine.
Figure 2.10a.3 shows these mapping to 25 and 5674.

r ↦ 25 and s ↦ 5674

This mapping is set up at the point in time when
T(x, y)

is executed in the program shown in Figure 2.10.2.
Close inspection of the memory map in Figure
2.10a.3 indicates that the datum associated with x
has been copied into the location in the subroutine
memory area associated with r.
Similarly, close inspection shows that the program memory address 5674 of the location in program memory
associated with y has been copied into the location in the subroutine memory area associated with s.

Now when we look at the subroutine header we see that the r parameter is labelled an IN parameter and the s
parameter is labelled an INOUT parameter:

SUBROUTINE T(IN r : Integer; INOUT s : Integer)

y

0
1
2
3
4
5

5670
5671
5672
5673
5674
5675

19835670
19835671
19835672
19835673
19835674
19835675

x

s
r

Main Memory(RAM)

Memory area for
procedure

local variables and
formal parameters

Memory area for
program variables

5674
25

25
17

Figure 2.10a.3 Memory map showing an
area reserved for program variables and an
area reserved for subroutine variables

PROGRAM Demo

VAR x, y : Integer

SUBROUTINE T(IN r : Integer; INOUT s : Integer)

 s ← s*r

ENDSUBROUTINE

BEGINPROGRAMBLOCK

 x ← 25

 y ← 17

 T(x,y)

 OUTPUT y

ENDPROGRAMBLOCK

Figure 2.10a.2 An example of a pseudo-code program with a
subroutine call involving data associated with two program
variables being passed to the subroutine

Information
In assessment material, AQA

will not use IN or INOUT. Also,

AQA’s pseudo-code does not use

variable declarations,

e.g Var x, y : Integer.

Institution licence - St Martins School Essex

 2 Programming

127

The interpretation of IN r : Integer is as follows: a value is to be copied into the formal parameter r when the
subroutine is called.
This is what is meant by Call by Value.
The interpretation of INOUT s : Integer is as follows: an address of where a value can be found in the program
memory area is to be copied into the formal parameter s when the subroutine is called.
This is what is meant by Call by Reference/Call by Address.

This copying takes place when the subroutine is called with actual parameters x and y by the program statement

T(x, y)

If a subroutine has the address of a datum in the program memory area then the subroutine may change the value
in this area. The subroutine in Figure 2.10a.2 does this with an assignment statement

s ← s*r

Call by reference/address thus can have the side-effect of changing the value of a variable in another area of
memory. This side-effect can be desirable and intended or undesirable.
Call by value cannot change the original value which has been copied.
Call by reference/address should be used as follows

• when a datum is too big to pass by value, i.e. it would take up a lot of space in subroutine memory or it
would take too long (relatively speaking) to copy into subroutine memory, e.g. a large array

• when more than one result of executing the subroutine needs to be returned from the subroutine call and
the language RETURN mechanism doesn’t support this

• when the data type of the result to be returned is not supported by the mechanism used by a function to
return a result. Function return uses a different mechanism from subroutine parameters to return a result.

If only a single result needs to be returned and the data type of the result is supported by the function mechanism
for returning results then a function should normally be used.

When a subroutine calls a subroutine, the subroutine memory area is used for
both the calling subroutine and the called subroutine parameters/variables.

Figure 2.10a.4 shows Call by Value and Call by Reference/Address support in
the programming languages Python, Java, Pascal/Delphi, C# and VB.NET.

Figure 2.10a.5 shows an example in Java of Call by Value.

Figure 2.10a.6 shows an example in Java of Call by Reference/Address.

Figure 2.10a.7 shows an example in Pascal of Call by Value and Call by Address.

Figure 2.10a.8 shows an example in C# of Call by Value and Call by Reference/
Address.

Figure 2.10a.9 shows an example in VB.NET of Call by Value and Call by
Reference/Address.

Key term
Call by value:
Formal parameter of subroutine

gets a copy of the datum

associated with the actual

parameter used in call to

subroutine.

Call by address:
Formal parameter of subroutine

is assigned the address in memory

of the datum associated with the

actual parameter used in call to

subroutine.

Key term
Subroutine parameter:
A subroutine parameter is a

mechanism for passing data into

and out of a subroutine.

Institution licence - St Martins School Essex

2.10a Subroutines (procedures/functions)

128

Language Call by Value Call by Reference/Address

Python Python is neither "call by value" nor "call by reference". In Python a variable is not an alias for a
location in memory. It is a binding to a Python object.

Java
void a(int r){
 r = r +10;
}

There is no call by reference/address only call by
value but a reference may be passed by value:
class Test{
 int x =5;
 void c(Test r){
 r.x = r.x+10;//object variable x is changed
 }
}

Pascal/
Delphi

Procedure A(r : Integer);
 Begin
 r := r + 10;
 End;
Function B(s : Integer) : Integer;
 Begin
 B := s + 10;
 End;

Procedure C(Var r : Integer);
 Begin
 r := r + 10;
 End;

C#

static void a(int r)
 {
 r = r + 10;
 }

static void b(ref int s)
 {
 s = s + 10;
 }

VB.NET
Sub A(ByVal r As Int)
 r = r + 10
End Sub

Sub B(ByRef s As Int)
 s = s + 10
End Sub

Figure 2.10a.4 Call by Value and Call by Reference/Address support in the programming languages
Python, Java, Pascal/Delphi, C# and VB.NET

public class CallByValue {
 public static void main(String[] args) {
 int x = 5;
 System.out.println("Before call to c " + x);
 c(x);
 System.out.println("After call to c " + x);
 }
 static void c(int r){
 r = r + 10;
 }
} Figure 2.10a.5 Java example of Call by Value

public class CallByReference {
 int x = 5;
 void c(CallByReference s){
 s.x = s.x+10;//object variable x is changed

 }

 public static void main(String[] args) {
 CallByReference exampleCByR = new CallByReference();
 System.out.println("Before Before call to c " + exampleCByR.x);
 exampleCByR.c(exampleCByR);
 System.out.println("After call to c " + exampleCByR.x);
 }
} Figure 2.10a.6 Java example of Call by Reference

Institution licence - St Martins School Essex

 2 Programming

129

Using subroutines with interfaces
Subroutine T(IN r : Integer; INOUT s : Integer)
 s ← s*r

EndSubroutine

In the subroutine T, the part

IN r : Integer; INOUT s : Integer

is called the subroutine’s interface. A subroutine interface is a mechanism by which data may be passed in and out
of a subroutine via subroutine parameters.

Program CallByValueAndCallByAddress;
Procedure A(r : Integer);
 Begin
 r := r + 10;
 End;
Function B(s : Integer) : Integer;
 Begin
 B := s + 10;
 End;
Procedure C(Var s : Integer);
 Begin
 s := s + 10;
 End;
Var
 x, y : Integer;
Begin
 x := 5;
 y := 5;
 A(x);
 Writeln(x);
 Writeln(B(y));
 C(y);
 Writeln(y);
 Readln;
End.

Figure 2.10a.7 Pascal example of Call by Value and
Call by Reference

using System;
namespace CallByValueAndCallByReference
{
 class Program
 {
 static void Main(string[] args)
 {
 int x;
 x = 10;
 a(x);
 Console.WriteLine(x);
 b(ref x);
 Console.WriteLine(x);
 Console.ReadLine();
 }

 static void a(int r)
 {
 r = r + 10;
 }

 static void b(ref int s)
 {
 s = s + 10;

 }

 }

}

Figure 2.10a.8 C# example of Call by Value and Call by
Reference

Module Module1
 Sub Main()
 Dim x As Integer = 5
 A(x)
 Console.WriteLine(x)
 B(x)
 Console.WriteLine(x)
 Console.ReadLine()
 End Sub
 Sub A(ByVal r As Integer)
 r = r + 10
 End Sub
 Sub B(ByRef s As Integer)
 s = s + 10
 End Sub
End Module

Figure 2.10a.9 VB.NET example of Call by
Value and Call by Reference

Questions
Explain the role of a subroutine parameter.

Explain
 (a) Call by value
 (b) Call by address

3

4

Institution licence - St Martins School Essex

2.10a Subroutines (procedures/functions)

130

Using subroutines that return values to the calling routine
Subroutines
After a subroutine is executed, control returns to the statement calling the subroutine. If the subroutine is a
procedure then the calling statement’s execution is complete. If the subroutine is a function, then the function
returns a result to the calling statement which this statement may or may not deal with before it completes its
execution.
For example, if the calling statement is as follows

x ← SquareOf(2)

the result 4 is returned by the call to function SquareOf and this result is then assigned to variable x.
Returning a result
If a result needs to be returned from an executing subroutine then a programmer may choose from two subroutine
options:

• Procedure with the result returned via an INOUT or OUT parameter (call by address/reference)
• Function with the result returned via the function return mechanism

Procedure option
The procedure option has been covered in a previous section of this chapter. An
OUT parameter is similar to an INOUT parameter but some programming
languages differentiate between the two by requiring an INOUT parameter to be
initialised with a value whereas an OUT parameter can be passed uninitialized or
undefined (see C#).
Function option
In some programming languages, e.g. Pascal, a function specifies a return value within the body of the function by
executing an assignment statement whose left-hand side is the name of the function - Figure 2.10a.10.

Function SquareOf (Number : Integer) : Integer;
 Begin
 SquareOf := Number * Number;
 End;

Figure 2.10a.10 Pascal function SquareOf which returns an integer result to the calling statement

Information
In C# a value must be assigned

to an OUT parameter within the

subroutine, whereas an INOUT

parameter can be left unchanged.

Information
In Delphi, when a function is called, a variable is automatically created with the name Result of the same type as the return

type of the function. It is available for the programmer to use to hold the result value to be returned by the function. Its value

is passed back to the calling statement when the function returns.

The implicitly declared variable Result can be seen as equivalent to an OUT type parameter - where the value upon entry to

the function is undefined. It is still possible in Delphi to use the Pascal convention of using the name of the function to assign

the result. In Pascal, assigning a value to be returned to the name of the function does not automatically cause the function to

return. Similarly, in Delphi assigning a value to be returned to the name of the function or to the variable Result does not au-

tomatically cause the function to return. In both Pascal and Delphi, usual practice is to use a temporary local variable to hold

the result to be returned and assign this to Result or the function name at the end of the function, which is the place where

control passes back to the calling statement.

In other programming languages, e.g. C#, functions use an explicit return statement

return expression
In addition to specifying a value, return causes the immediate termination of the function.

Institution licence - St Martins School Essex

 2 Programming

131

Figure 2.10a.11 shows a rather contrived
C# function Calculate with three return
expression statements.
The program executes when Main is called.
The logic of the program selects

return number * number

because parameter number is 2.
At this point control passes back to the
calling statement
Console.WriteLine(Calculate(2));

This statement then outputs the value 4.
If control did not pass back at this point
then return 6, the last statement in
Calculate, would be executed with the
outcome that the return value would change
to 6.
The fact that the output is 4 and not 6
confirms that return causes the immediate
termination of the function.
Type of result returned
Many programming languages place restrictions
on the type of the result returned by a function.
Figure 2.10a.12 shows a Pascal program which
defines and uses a function whose result type is a
composite data type.
A composite data type or compound data type
is any data type which can be constructed in
a program using the programming language’s
primitive data types and other composite types.
It is sometimes called a structured data type, but
this term is more commonly reserved for arrays
and lists.
The act of constructing a composite type is known
as composition.
When not to use a function to return a result
Although it is possible to return multiple separate
results from a function, it is not normally considered good practice. For example, in Figure 2.10a.13 the Pascal
function returns one result in INOUT parameter s and another result via the function return mechanism:
Both results in this example return a value which is a scalar
data type, in this case, an integer.
A scalar data type is a single value data type.
It would be better to use a procedure with two INOUT
parameters instead of a function.

using System;
namespace FunctionReturn
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(Calculate(2));
 Console.ReadLine();
 }
 static int Calculate(int number)
 {
 if (number == 2)
 {
 return number * number;
 }
 if (number == 4)
 {
 return number * number * number;
 }
 return 6;
 }
 }
}

Figure 2.10a.11 C# function Calculate which returns an integer
result to the calling statement

Program FunctionReturnType;
Type
 TArrayType = Array[1..10] Of Integer;
Function Test (x : TArrayType) : TArrayType;
 Var
 i : Integer;
 Begin
 For i := 1 To 10
 Do x[i] := 2 * x[i];
 Test := x;
 End;
Var
 y : TArrayType = (1,2,3,4,5,6,7,8,9,10);
 z : TArrayType;
Begin
 z := Test(y);
 Writeln(z[2]);
 Readln;
End.

Figure 2.10a.12 Pascal function test which returns a result
of composite type to the calling statement

Function D(Var s:Integer) : Integer;
 Begin
 ...
 End;

Figure 2.10a.13 Pascal function D which
returns two results

Institution licence - St Martins School Essex

2.10a Subroutines (procedures/functions)

132

Declaring local variables
A subroutine may declare its own variables and use these within the body of the
subroutine as shown in the subroutine DoExample in Figure 2.10a.14.

The variables s and t are known as local variables.
They are only visible inside subroutine DoExample, i.e. they cannot be accessed from outside the subroutine.
In fact, they do not exist until the subroutine starts executing.
They disappear when the subroutine stops executing. Thus any values that they hold are stored temporarily.

Lifetime
The lifetime of a local variable is the lifetime of an execution of the subroutine in which the local variable is
declared.

Visibility
The scope of a local variable is the scope of the subroutine in which it is declared – scope means where the local
variable is visible and can be used.

Programming tasks
Write and test a function which accepts a string as input and returns the string reversed.

Write and test a function which accepts a string as input and returns the number of words it contains, e.g.
"Hello World" contains 2 words.

1

2

SUBROUTINE DoExample(IN x : Integer)
 Var
 s, t : Integer

 OUTPUT x
 s ← 6
 t ← 7
 OUTPUT s + t

ENDSUBROUTINE

Figure 2.10a.14 Subroutine with local variables

Declaration of two local
variables, s and t

Using local variables, s and t
in body of subroutine

Key term

Local variable:
These are variables declared

inside a subroutine and used

within the body of the subroutine.

The lifetime of a local variable is

the lifetime of an execution of

the subroutine in which the local

variable is declared.

The scope of a local variable is the

scope of the subroutine in which

it is declared – scope means

where the local variable is visible

and can be accessed.

Programming tasks

Write and test a function which calculates xn where n ≥ 1.

Use the following algorithm to calculate xn

Power ← x
Count ← 1
WHILE Count < n Do
 Power ← Power * x
 Count ← Count + 1

ENDWHILE

Your function should make use of local variables.

3

Institution licence - St Martins School Essex

 2 Programming

133

Using local variables
Figure 2.10a.15 shows the declaration and use of local variables (called i and j) in the programming languages
Pascal/Delphi, C#, Python, Java and VB.NET.

Why use local variables?
Support for modularisation
Subroutines enable modularisation of a program.
A solution to a problem can be divided into separate and independent modules. These modules can be
implemented as subroutines.
The aim of modularisation is to have subroutines which can be worked on independently of the rest of the program.
This requires that each subroutine is self-contained and that its interaction with the rest of the program takes place
only through the subroutine’s interface, i.e. through its formal parameter(s).
Using local variables aids modularisation.
It also enables a subroutine to be reused because if a subroutine is self-contained and independent it may be lifted
and used in another program.

Pascal/Delphi C#
Procedure DoExample(n : Integer);
 Var
 i, j : Integer;
 Begin
 j := 6;
 For i : = 1 To n
 Do Writeln('Hello World!', i*j)
 End;

static void DoExample(int n) {

 int j = 6;

 for (int i = 1; i <= n; i++)

 {

 Console.WriteLine("Hello World! {0}", i*j);

 }

}

Python Java
def doExample(n):

 j = 6

 for i in range(n):

 print('Hello World!', j*(i + 1))

public static void doExample(int n) {

 int j = 6;

 for (int i = 1; i <= n; i++) {

 System.out.println("Hello World! " + j*i);

 };

}

 VB.Net

Sub doExample(ByVal n As Integer)

 Dim j As Integer = 6

 For i As Integer = 1 To n

 Console.WriteLine("Hello World! {0}", i*j)

 Next

End Sub

Figure 2.10a.15 Declaring and using local variables

Questions
What is a local variable?

What is the lifetime and scope of a local variable?

Explain why the use of local variables is considered good practice.

5

6

7

Institution licence - St Martins School Essex

2.10a Subroutines (procedures/functions)

134

In this chapter you have covered:

 ■ The concept of subroutines

 ■ The advantages of using subroutines in programs

 ■ Describing the use of parameters to pass data within programs

 ■ Using subroutines that return values to the calling routine

 ■ That subroutines may declare their own variables, called local variables, and
that local variables usually:

• only exist while the subroutine is executing

• are only accessible within the subroutine.
 ■ Using local variables and explaining why it is good practice to do so.

Questions
Figure 2.10a.16 contains pseudo-code for a subroutine that returns a value.
Complete the trace table for the call D(12, 4).
(You may not need to use all of the rows in the table).

Explain why the subroutine call D(12, 0) will never return a result.

Modify subroutine D so that it returns -1 when called with a value for parameter b ≤ 0.

8

9

10

SUBROUTINE D(a, b)
 c ← 0
 WHILE a > 0
 a ← a - b
 c ← c + 1
 ENDWHILE
 RETURN c
ENDSUBROUTINE

Figure 2.10a.16

a b c

Institution licence - St Martins School Essex

135

Learning objectives:

 ■ Describe the structured
approach to programming

 ■ Explain the advantages of the
structured approach.

 2 Programming

2 Programming
 ■ 2.10b Structured programming

The structured approach to program design and construction
Software artefact
The end result of program design and construction is an artefact, a piece of
software that when executed solves some given problem, hopefully the one
required to be solved.

Design
"Design" means to plan or mark out the form and method of solution.

Software design takes a real-world problem and produces a plan for a
computer-based solution.

Structured design
Structured design is a disciplined process of deciding which components
interconnected in which way will solve some well-specified problem.

Structured design relies on a principle known since the days of Julius Caesar:

DIVIDE and CONQUER

A problem is divided into smaller and smaller subproblems, so that each
subproblem will eventually correspond to a component or module of the
system which solves the problem.

The partitioning process into smaller and smaller subproblems is done until the
subproblems are

• manageably small, and
• solvable separately, i.e. relatively independent of one another.

Good design
Good design is an exercise in partitioning and organising the pieces of the
system so that each is

• cohesive, and
• loosely coupled (by using subroutine interfaces to pass data in and out of

the subroutine or the return statement, and relying on local variables, i.e
variables declared inside subroutine - see later).

We call the pieces of the system, modules.

The modules are plugged together to create the system. Modules are usually
implemented as subroutines (procedures and functions). Subroutines are
covered in Chapter 2.10a.

Cohesive/Cohesion
Cohesion measures the strength of the interconnection between elements
within a subroutine.

Key term
Design:
To plan or mark out the form and

method of solution.

Key principle
Good design:
Good design is an exercise in
partitioning and organising
the pieces of the system so that
each is
• cohesive, and
• loosely coupled

Key term
Structured design:
Structured design is a disciplined

process of deciding which

components interconnected in

which way will solve some well-

specified problem.

A problem is divided into smaller

and smaller sub problems, so that

each sub problem will eventually

correspond to a component

of the system which solves the

problem.

The partitioning process into

smaller and smaller sub problems

is done until the sub problems are

• manageably small, and

• solvable separately, i.e.

relatively independent of one

another.

Institution licence - St Martins School Essex

 2 Programming

136

To achieve cohesion, highly interrelated parts of the real-world problem should be in the same piece of the
software system, i.e. things that belong together should go together.

Figure 2.10b.1 shows a schematic mapping from a problem in a real-world system to a highly-cohesive software
architecture of a structured design for a computer-based system to solve the problem.

Figure 2.10b.2 shows a specific example of a
simple calculator system. Note the one-to-one
mapping between real-world system and the
computer-based system.

To achieve a solution in which
modules/components are highly-cohesive the
software system needs to be broken down into
modules

• which are highly independent and

• which accomplish a single objective.

The aim is to achieve functional cohesion, i.e.
modules which contain only one function or
perform only one logically-related task.

For example,

• CalculateSquare

• GetDate.

One good way to determine if modules are
(functionally) cohesive is to write a phrase fully
describing what the module does.

Analysis of this phrase can indicate whether or
not the module is (functionally) cohesive. The
module is not (functionally) cohesive if the
result is one of the following:

• A compound sentence such as

 � Edit Student Name AND Test Scores

 � Get two operands AND Add these

• A lack of a specific object

 � Edit all Data

• Words relating to time such as

 � Initialisation

• Words such as "house-keeping" or
"clean-up" because these imply more than one task.

The functional description should not define the code within the module but how the module appears to the coder,
e.g. Subtract.

Problem
Real World Computer

System

An interrelated part of the
problem maps to A module of the system

Figure 2.10b.1 Mapping of problem parts to system modules

Real World
Software design is a

model of a real-world
system

Computer
Problem System

Module

Add

Divide
Get
Two

Operands

Multiply

Subtract

Show
Result Add

Divide
Get
Two

Operands

Multiply

Subtract

Show
Result

Function Subtract (First, Second)
Function Add(First, Second)
Function Multiply(First, Second)

Figure 2.10b.2 Highly interrelated parts of the
problem should be in the same piece of the system

Institution licence - St Martins School Essex

2.10b Structured programming

137

The highest level of cohesion, referred to as functional cohesion, is a subroutine
in which

• every element is an integral part of a single function (task), and
• every element is essential to the performance of a single function (task).

Some advantages of using subroutines with high cohesion:
• The subroutine can easily be replaced by any other serving the same

purpose since what it does is localised within the subroutine, i.e. it has
no side-effects when it executes

• In the event of program failure,
 � it should be easier to locate the error as being in the subroutine
 � it should be easier to discount the subroutine as a source of error

• Different developers can work on individual subroutines because each
is an independent unit.

Loosely coupled
Coupling measures the strength of relationships between subroutines (modules).
The objective of structured design is to minimise the coupling between
subroutines, so that they will be as independent as possible.
The lower the coupling, the less likely that other subroutines will have to be
considered in order to

• create a subroutine
• understand a given subroutine
• debug a given subroutine
• change a given subroutine.

Coupling results from connections.
A connection exists when an element of code references a location defined
outside the module.
Some connection must exist among subroutines in a program, or else they
would not be part of the same program.
The objective is to minimise the coupling among subroutines.

Questions
What is the process known as design?

What is structured design?

What is meant by the term cohesive when applied to a module or subroutine of a system?

A procedure in a calculator program is described as "Adding two operands and displaying the result".
 (a) Explain why this procedure is not considered functionally cohesive.
 (b) What can be done to achieve functional cohesion in this case?

State two advantages of using modules with high cohesion.

1

2

3

4

5

Key terms
Cohesion:
Cohesion measures the strength

of the interconnection between

elements within a subroutine.

Functional cohesion:
Functional cohesion is the highest

level of cohesion. A functionally

cohesive module is one in which

• every element is an integral

part of a single function

(task), and

• every element is essential to

the performance of a single

function (task).

Key term
Coupling:
Coupling measures the strength

of relationships between subrou-

tines (modules).

The objective of structured

design is to minimise the coupling

between subroutines, so that they

will be as independent as possible.

Coupling results from

connections. A connection

exists when an element of code

references a location defined

outside the subroutine.

Information
The key terms coupling, cohesion
and functional cohesion are not
explicitly mentioned in AQA's
specification but their concept
underpins structured design.

Institution licence - St Martins School Essex

 2 Programming

138

To minimise coupling among subroutines:
• Subroutines or modules should only be allowed to access that data which they need to perform their

assigned task
• All data transfer between subroutines is visible in the subroutine parameters
• There must be no hidden flows of data via global variables or shared data areas
• There should be no control information passing between subroutines, e.g. Boolean flags
• The number of subroutine parameters should be minimal.

Loose coupling is achieved when a
subroutine’s data interface with other
subroutines is its subroutine parameter list.
Here we interpret subroutine to mean a
procedure or function.

In VB.NET, a procedure
DisplayMessage is defined with the
language keywords Sub and End Sub as
shown in the example in Figure 2.10b.3.
In VB.NET, the term module can be
interpreted as equivalent to program.

Figure 2.10b.4 shows a procedure
DisplayMessage defined with the
language keywords Procedure and Begin
and End.

The data interface for VB.NET
DisplayMessage is the parameter list
ByVal Message As String.

The data interface for Pascal
DisplayMessage is the parameter list
Message : String.

The procedure DisplayMessage is called
with actual parameter value "Hello World"
and 'Hello World', respectively, in Figure
2.10b.3 and Figure 2.10b.4.
The Pascal program in Figure 2.10b.5
has declared a global variable Message
which in Pascal is visible within procedure
DisplayMessage. The procedure
DisplayMessage has dispensed with a
procedure parameter list and instead relies on
accessing the global variable Message.
The procedure DisplayMessage in
Figure 2.10b.5 has a higher coupling with its program than DisplayMessage does in Figure 2.10b.4.

Module ProcedureInterface
 Sub Main()
 DisplayMessage("Hello World")
 Console.ReadLine()
 End Sub
 Sub DisplayMessage(ByVal Message As String)
 Console.WriteLine(Message)
 End Sub
End Module

Figure 2.10b.3 VB.NET program with procedure DisplayMessage

Program DisplayMessageExample;
Procedure DisplayMessage (Message : String);
 Begin
 Writeln(Message);
 End;
Begin
 DisplayMessage('Hello World');
 Readln;

End.

Figure 2.10b.4 Pascal program with procedure DisplayMessage

Program DisplayMessageExampleGlobal;
Var
 Message : String;
Procedure DisplayMessage;
 Begin
 Writeln(Message);
 End;
Begin
 Message := 'Hello World';
 DisplayMessage;
 Readln;
End.

Figure 2.10b.5 Pascal program with procedure
DisplayMessage without a parameter list

Institution licence - St Martins School Essex

2.10b Structured programming

139

Questions
What is coupling when applied to modules or components of a system?

Why should coupling between modules be minimised?

How does coupling between modules arise?

How can coupling between modules be minimised?

Give two reasons why the pseudo-code in Figure 2.10b.6 could be
considered a poor design by structured design standards.

Suggest one reason why the procedure DisplayMessage in
Figure 2.10b.7 could be considered poorly designed by
structured design standards.
How could the design of procedure DisplayMessage and the program
be changed to reflect good structured design?

A procedure Initialise is defined with a long parameter list of reference formal parameters, i.e. each
formal parameter is a pointer type which when replaced by an actual parameter will point to a variable
outside the procedure:
 Procedure Initialise(Var a, b, c, d, e, f, g, h, i, j, k, l, m, n, p : Integer)

Why is this considered a poor design by the standards of structured design?

6

7
Program Exercise1
Var
 No1, No2 : Integer
Procedure AddTwoNumbers
 Output No1 + No2
End Procedure
Begin
 No1 ← 4
 No2 ← 5
 AddTwoNumbers
End

Figure 2.10b.6 Pseudo-code to add
two numbers

8

9

10

 Module Module1
 Sub Main()
 DisplayMessage("hello world", False)
 DisplayMessage("hello world", True)
 Console.ReadLine()
 End Sub
 Sub DisplayMessage(ByVal Message As String, ByVal UpperCase As Boolean)
 If UpperCase Then
 Console.WriteLine(StrConv(Message, vbUpperCase))
 Else Console.WriteLine(Message)
 End If
 End Sub
End Module

Figure 2.10b.7 VB.NET program that uses a procedure DisplayMessage with a flag parameter

11

12

13

Institution licence - St Martins School Essex

 2 Programming

140

Simple calculator example which illustrates cohesion and loose coupling
Suppose that we are required to demonstrate structured design in a simple way.

We choose to do this by designing and creating a very simple calculator that is limited to performing integer
arithmetic on two given operands.

The arithmetic operations that must be supported are

1. Add
2. Subtract

The major "pieces" of the system are

1. The system must display to the user the choices which are available for arithmetic operations
2. The system must obtain the user’s choice of arithmetic operation
3. The system must obtain two operands from the user
4. The system must carry out the chosen operation on the two operands
5. The system must have a "piece" to do each of the following

5.1 Add
5.2 Subtract

6. The system must display the result to the user.

Structured design is then used to decide which modules to use to solve this
problem.

Structured design tells us that each piece identified above in 1, 2, 3, 4, 5.1, 5.2, 6
should be a module of the system - Figure 2.10b.2.

In this simple example, these modules can then be implemented in a programming language as subroutines.

Hierarchy charts
We show the software architecture of the simple calculator system resulting from the structured design approach in
Figure 2.10b.8. We call this a hierarchy chart.

This doesn’t tell the whole story because the chart doesn’t show the coupling between the modules/subroutines.
Loose coupling is achieved when a subroutine’s data interface with other subroutines is its subroutine parameter list.
By adding the parameter list for each subroutine to the chart we can show that its data interface is indeed that
required for low coupling - Figure 2.10b.9.
The meaning of the symbols used in Figure 2.10b.9 are shown in Figure 2.10b.10.

Calculator
Program

Add Subtract
Display
Result

Display
Choices

Get
Valid Choice

Get
Two Operands

Figure 2.10b.8 Hierarchy chart showing the software architecture of the simple calculator system

Key term
Hierarchy chart:
In structured design of software,

the partition of a software system

into its component parts can

expressed as a hierarchy chart

which shows the components

(subroutines) and how they are

interconnected.

Institution licence - St Martins School Essex

2.10b Structured programming

141

The parameter Choice is the only parameter of subroutine GetChoice. It is an OUT parameter. The value
returned by GetChoice is used by the Calculator Program to choose from among subroutines Add, Subtract.

Subroutine Add has three
parameters in its data
interface: No1, No2 and
Result. No1 and No2 are
IN parameters. Result is
an OUT parameter.

Sometimes a subroutine
needs to use an IN-OUT
parameter because it
processes the value passed in
by an IN-OUT parameter
and then exports a new value
from the subroutine in the
same IN-OUT parameter.

The chart in Figure 2.10b.9
just shows the architectural
breakdown of the system
into its software modules
and the data interfaces
between these modules.

Figure 2.10b.11 shows
the program structure in
Pascal using procedures. The
program structure could
also have been written using
functions if required.

Calculator
Program

Add Subtract
Display
Result

Display
Choices

Get
Valid Choice

Get
Two Operands

No1

No2

No1

No1

No2 No2
ResultResult

Result
Choice

Figure 2.10b.9 Hierarchy chart showing the software architecture of the simple
calculator system and the parameter list/data interface of each subroutine

OUT parameter
symbol

IN parameter
symbol

IN-OUT parameter
symbol

Figure 2.10b.10 The meaning of the
symbols shown in Figure 2.10b.9

Program SimpleCalculator;
 Procedure DisplayChoices;
 Begin
 End;
 Procedure GetValidChoice(Var Choice : Char);
 Begin
 End;
 Procedure GetTwoOperands(Var No1, No2 : Integer);
 Begin
 End;
 Procedure Add(No1, No2 : Integer; Var Result : Integer);
 Begin
 End;
 Procedure Subtract(No1, No2 : Integer; Var Result : Integer);
 Begin
 End;
 Procedure DisplayResult(Result : Integer);
 Begin
 End;
Var
 UsersChoice : Char = 'A';
 FirstNo : Integer = 0;
 SecondNo : Integer = 0;
 Answer : Integer = 0;
Begin
 Repeat
 DisplayChoices;
 GetValidChoice(UsersChoice);
 GetTwoOperands(FirstNo, SecondNo);
 Case UsersChoice of
 'A', 'a' : Add(FirstNo, SecondNo, Answer);
 'S', 's' : Subtract(FirstNo, SecondNo, Answer);
 'Q', 'q' : ;
 End;
 DisplayResult(Answer);
 Until UsersChoice In ['Q', 'q'];
End.

Actual parameters

Formal parameter

Var denotes that parameter is
IN-OUT but in this example it
is used as an OUT parameter

IN only parameters

Figure 2.10b.11 Program structure in
Pascal of simple calculator written as

procedures

Programming task
Create a simple calculator program based on the program structure shown in Figure 2.10b.9 in a
programming language of your choice.

1

Institution licence - St Martins School Essex

 2 Programming

142

Structured design does not address the issue of how to write the program for the body of each procedure only the
division of a system into its components and how those components fit together to produce a solution.

To write the program for the body of the procedures we use the principles of structured programming.

Structured programming
The principles
Structured programming advocates a disciplined approach to the construction of programs in order to avoid
problems which can arise if the approach is not disciplined.

At the lowest level, the main principles of structured programming are concerned with the flow of control through
a program unit such as shown in Figure 2.10b.12. The most fundamental idea is that the main flow of control
through a program unit should be from top to bottom of the program.

This translates to every block (sequence, selection and iteration) should have one entry point and one exit point.
In Figure 2.10b.12 this means that the flow of control enters at the top of a dotted block and exits at the bottom.
Within a block, the flow doesn't have to be forward, e.g. iteration.

There are three basic control constructs necessary to build any program:

• Sequence - a list of program statements
which are executed one after another (i.e. in
sequence),
e.g. x ← x + 1; y ← y + 2; z ← 6;

• Selection - a means of choosing between two
or more sequences of statements depending on
the value of some condition(s),
e.g. If Then Else

• Iteration - a construct to allow controlled
repetition of a sequence of statements, e.g.
While x < 5 Do Something.

It can be shown that these three constructs are
sufficient to implement the control structure of
any algorithm.

Structured programming is also known as gotoless
programming because it avoids the use of the Go
To control construct in all but the one case of
a major error in the computation which would
require, if handled in a structured programming way, convoluted and difficult-to-understand program source code
to be written.

S4

S1
S2
S3

?

S

S5

?

S9

Choice

S10 S11 S12 S13

Sequence

Program
Begin

End

Selection

Iteration

Selection

Case Choice Of (S9;S10;S11;S12;S13)

While ? Do S

S1; S2; S3

If ? Then S4 Else S5

Figure 2.10b.12 Program unit showing flow of control from
top to bottom through the three basic control constructs,

sequence, selection and iteration

Institution licence - St Martins School Essex

2.10b Structured programming

143

Structured programming requires that
1. The main flow of control through a program unit should be from top to bottom of the program.
2. Program blocks should have one entry point and one exit point.
3. Meaningful identifiers should be used for variables, subroutines (procedures and functions), etc, to aid

readability and understanding.
4. Indentation should be used that reflects the structure of the program and which aids readability and

understanding.
5. The following control constructs should be used: sequence, selection and iteration.
6. Go To should be avoided in all but the one case of a major error in the computation which would require,

if handled in a structured programming way, convoluted and difficult-to-understand program source code
to be written.

7. The use of global variables which are used in a global way should be avoided.
8. Data should be passed to subroutines in subroutine parameters and results returned through

subroutine parameters or preferably as a function return datum.
9. Local variables should be used for handling data within subroutines.

Stepwise refinement

The focus of structured design is the identification of the components of the system and how they interact, i.e. the
software architecture of the computerised system, and not on the internal design of the components.

For the internal design of the components, i.e. the program source code for subroutines and the program which
calls these subroutines, we use structured programming.

Internal design of components is done using the control structures of structured programming, sequence, selection
and iteration and a technique called stepwise refinement.

Stepwise refinement starts with the major steps.
Each major step is then refined into a more detailed sequence of steps.
Each one of these more detailed steps is then refined and so on until a stage is reached where the steps can be
replaced by programming language statements.
Psychology research tells us that humans manage information in "chunks" and that the human brain is able to
handle up to five pieces of information, maybe seven at a pinch. Stepwise refinement fits this limitation of the
human brain well.

Advantages of structured programming
We use structured programming because it leads to programs which are

• easier to understand,
• easier to maintain (debug and change)
• easier to reason about (the program does what it is required to do).

A goal of structured programming is to reduce the conceptual gap between the program text and the
corresponding computations. In other words, how can you be sure that your program does what it is required to
do, i.e. meets its specification?
Writing programs that are easy to understand contributes to achieving this goal even if it is done at the expense of
efficiency, e.g. execution time and memory requirements.
Subroutines produced using structured programming should be easier to reuse in other programs because they are
loosely coupled.

Institution licence - St Martins School Essex

 2 Programming

144

In this chapter you have covered:

 ■ Describing the structured approach to programming

 ■ Explaining the advantages of the structured approach.

Questions
Which of the following statements are requirements of structured programming:
A Use local variables
B Use Go To statements
C Data should be passed to subroutines in subroutine parameters
D Results should be returned through subroutine parameters or via a return statement
E Don't use local variables.

Explain three advantages of the structured programming approach.

14

15

Institution licence - St Martins School Essex

145

 ■ 2.11 Robust and secure programming

Be able to write simple data validation routines
In computing, the term validation refers to computerised data checking that
is carried out with the purpose of detecting any data that is unreasonable,
incomplete or not in the correct format.

Users are only human and therefore can make mistakes when entering data
into executing programs.
The sensible approach, when writing programs which act on user input, is to
include program code whose sole purpose is to guard against such mistakes by
checking the validity of the user input, and, if necessary, rejecting and then
reporting invalid input when it occurs.
Why validate?

How many times have you written programs that a user could crash by
entering invalid input, often unwittingly?
Here is a typical interaction between a program and a user that goes wrong
because
(a) the program does not validate user input and
(b) the user misunderstands the format required for the numeric data they are

prompted to enter.

> Input your age as an integer between 11 and 18
sixteen
$$$ Program crashed $$$

Yet when this program is run again with the following interaction, it doesn’t crash:

> Input your age as an integer between 11 and 18

16

In both examples, a string was entered, the first time, string 'sixteen', the second time, string '16'.
Although, both strings appear valid, to the computer program only the second is valid.
The program was expecting a string containing only digits such as '16' that could be converted to an integer
i.e. 16, and not one that could not be converted directly, i.e. 'sixteen'.
Without any guidance on how to spot and gracefully handle this error in the string, the program crashed.
To improve a program’s ability to cope with user mistakes, program code which validates a user’s input is needed.
This code should only allow execution to proceed if the input is valid otherwise user input should be rejected and
requested again.

Validation checks that the data is reasonable not that it is accurate.
The string '16' is reasonable because it contains only digits but it may not be accurate.
The user may have lied about their age, they could be '15'.

Further checks are necessary on valid data to check its accuracy. These are called integrity checks.

Learning objectives:
 ■ Be able to write simple data
validation routines

 ■ Be able to write simple
authentication routines

 ■ Understand what is meant
by testing in the context of
algorithms and programs

 ■ Be able to correct errors within
algorithms and programs

 ■ Understand what test data is
and describe the following types
of test data: normal (typical),
boundary (extreme) and
erroneous data

 ■ Be able to select and justify the
choice of suitable test data for a
given problem

 ■ Understand that there are
different types of error:
• syntax error
• logic error

 ■ Be able to identify and categorise
errors within algorithms and
programs.

2 Programming
2 Programming

Institution licence - St Martins School Essex

2 Programming

146

Different types of validation

Length, presence, type and range checks
For the age example we would expect to check the following

• minimum length - the data entered must be a string at least two digits long
• maximum length - the data entered must be a string at most two digits long.

We call these length checks.
and

• string entered is not empty, i.e. nothing has been entered.
We call this a presence check.

and
• string consists only of character digits, i.e. characters chosen from '0'..'9'.

We call this a type check.
and

• integer representation of the input should be in the range 11 to 18, inclusive.
We call this a range check.

Failure to pass any of these checks should result in the user being
• presented with an informative message drawing attention to the specific error
• asked to try entering input again.

The validity checks should be repeated until all are passed.
The following pseudo-code shows how this might be done to achieve greater program robustness:

Validation
REPEAT

 valid ← True

 OUTPUT 'Input your age as an integer between 11 and 18:'

 ageStr ← USERINPUT # ageStr is a string variable

 IF LEN(ageStr) = 0 THEN

 OUTPUT 'you must enter something, please try again'

 valid ← False

 ELSE

 IF LEN(ageStr) ≠ 2 THEN

 OUTPUT 'input must be two character digits in length, please try again'

 valid ← False

 ELSE

 TRY

 age ← STR_TO_INT(ageStr) # try to convert string, ageStr, to an integer

 CATCH # catch a conversion error

 OUTPUT 'Not an integer, please try again' # deal with conversion error

 valid ← False

 ENDTRY

 IF valid THEN

 IF (age < 11) OR (age > 18) THEN

 OUTPUT 'input must be in range 11 to 18, inclusive, please try again'

 valid ← False

 ENDIF

 ENDIF

 ENDIF

 ENDIF

UNTIL valid

Figure 2.11.1 Validation of user input

Information
Exception handling:
Exception handling, i.e. the pseudo-code TRY CATCH ENDTRY is not in AQA
GCSE Computer Science specification, but it is useful to know because using it
in programs that you write is considered good programming practice.

Institution licence - St Martins School Essex

2.11 Robust and secure programming

147

The code section TRY CATCH ENDTRY in Figure 2.11.1 is designed to first
try string-to-integer conversion on the age string. If this conversion fails then
the error is 'caught', and handled by the CATCH code section thus avoiding a
program crash.
We might place the validation code in Figure 2.11.1 in a subroutine as follows

Subroutine GetValidAge can then be called to return a valid age

nextAge ← GetValidAge

File access errors

Any attempt by an executing program to access a file that does not exist (or
does not exist in directory space accessed) will cause an execution error which
could crash the program.

To avoid the program encountering such an event we need to improve
the robustness of the program by checking for the existence of the file
with the given filename.
We call this an existence check.
One way is shown in Figure 2.11.2 which uses TRY CATCH
ENDTRY to catch ('trap') this error. If the file ages.txt does not
exist in the current directory then attempting to open it results in an
error which is 'caught' and handled by the code in the CATCH section.

Exception handling in various programming languages

Validation routine for age
 SUBROUTINE GetValidAge

 Code from Figure 2.11.1 goes here
 RETURN age

 ENDSUBROUTINE

Key concept
Exception handling:
An exception is an unexpected
(or at least unusual) condition
that arises during program
execution, and which cannot
easily be handled by the
program.
Another name for an exception
is a program error.
Such errors may be trapped
using the following concept:

TRY
 # do some code that might

cause an error
CATCH

 # if an error is found then do
this code

ENDTRY

Validation
 fileExists ← True

 TRY

 fileHandle ← OPEN('ages.txt')

 dataIN ← READLINE(fileHandle)

 CLOSE(fileHandle)

 CATCH

 OUTPUT('File does not exist')

 fileExists ← False

 ENDTRY

Figure 2.11.2 Validation of file existence

 Program AgeConversionExceptionHandling;
 {$APPTYPE CONSOLE}
 {$RANGECHECKS ON}
 Uses SysUtils;
 Var
 age : Integer;
 ageStr : String;
 Begin
 Try
 Write('Input your age as an integer between 11 and 18: ');
 Readln(ageStr);
 age := StrToInt(ageStr);
 Except
 Writeln('Not an integer, please try again')

 End;
 Writeln('Press return key to exit program');
 Readln;
 End.

Delphi/Pascal

Institution licence - St Martins School Essex

2 Programming

148

C#
 using System;
 namespace AgeConversionExceptionHandling
 {
 class Program
 {
 static void Main(string[] args)
 {
 int age;
 try
 {
 Console.Write("Input your age as an integer between 11 and 18: ");
 String ageStr = Console.ReadLine();
 age = Int32.Parse(ageStr);
 }
 catch (Exception e)
 {
 Console.WriteLine("Not an integer, please try again");
 }
 Console.WriteLine("Press return key to exit");
 Console.ReadLine();
 }
 }
 }

VB.NET
 Module Module1
 Sub Main()
 Dim age As Integer
 Dim ageStr As String
 Try
 Console.Write("Input your age as an integer between 11 and 18: ")
 ageStr = Console.ReadLine()
 age = Integer.Parse(ageStr)
 Catch e As Exception
 Console.WriteLine("Not an integer, please try again")
 End Try
 Console.Write("Press return key to exit")
 Console.ReadLine()
 End Sub
 End Module

Institution licence - St Martins School Essex

2.11 Robust and secure programming

149

Writing simple authentication routines

Java
 import java.util.Scanner;
 public class AgeConversionExceptionHandling {
 public static void main(String[] args) {
 int age;
 try
 {
 Scanner in = new Scanner(System.in);
 System.out.print("Input your age as an integer between 11 and 18: ");
 String ageStr = in.nextLine();
 age = Integer.parseInt(ageStr);

 }
 catch (Exception e)
 {
 System.out.println("Not an integer, please try again");
 }
 }
 }

Python
 try:
 ageStr = input("Input your age as an integer between 11 and 18: ")
 age = int(ageStr)
 except ValueError:
 print("Not an integer, please try again")
 else:
 print("Conversion was successful")

Questions
Write pseudo-code which prompts (asks) a user for a password, then collects a string from the user and
checks that the string is at least 8 characters in length.

Modify your pseudo-code from Question 1 so that it repeats the action of this code until a password of
valid length is entered.

Write pseudo-code which prompts a user to enter an integer in the range 0 to 9, then collects an integer in
an integer variable, n, and checks that n is in the range 0 to 9. (Assume that only integers are entered).

Modify your pseudo-code from Question 3 so that it repeats the action of this code until an integer within
the expected range is entered.

Modify your pseudo-code from Question 4 so that it traps input that is not an integer string.

1

2

3

4

5

Information
AQA pseudo-code:
The pseudo-code that AQA will use in examination material is listed in the following PDF which may be downloaded from
https://filestore.aqa.org.uk/resources/computing/AQA-8525-TG-PC.PDF

Institution licence - St Martins School Essex

2 Programming

150

User authentication is the process or action of verifying the identity of a user.
It involves three distinct steps:

1. Identification: The identification step
requires that a person identifies themselves,
e.g. by means of identification string such
as a username.

2. Authentication: Once identification has
been provided, the person is required to
provide evidence of their identity which
could be done by password.

3. Authorisation: Allows an authenticated
person access to the system.

Figure 2.11.3 shows pseudo-code for a very
simple authentication routine, so simple that
valid username and password are hard-coded
into the routine. This is not how it would be
done in practice but it suffices for the moment
to illustrate the first two steps - identification
check which if successful is followed by a
password check.

In practice, usernames and passwords would
be stored securely in a file that would be
accessed by the program which authenticates
users. Securely means stored in a form that
protects usernames and passwords from
unauthorised access. One way that this could
be done uses encryption but this is beyond
GCSE.

Figure 2.11.4 shows in principle how
authentication could be done using a text file
a.txt to store usernames and passwords each
on a separate line. Validation of user input
and code to deal robustly with file access have
been omitted for space reasons.

Authentication
 match ← False

 REPEAT

 OUTPUT 'Input your user name'

 username ← USERINPUT

 IF username ≠ 'fredbloggs' THEN
 OUTPUT 'Your user name is not recognised'

 ELSE

 OUTPUT 'Input your password'

 password ← USERINPUT

 IF password ≠ 'letmein' THEN
 OUTPUT 'Your password is not recognised'

 ELSE

 match ← True

 ENDIF

 ENDIF

 UNTIL match
Figure 2.11.3 User authentication

Programming tasks
In a programming language familiar to you, write a program which implements your pseudo-code answer
to Question 2.

In a programming language familiar to you, write a program which implements your pseudo-code answer
to Question 5.

1

2

Authentication
 match ← False

 REPEAT

 OUTPUT 'Input your user name'

 username ← USERINPUT

 OUTPUT 'Input your password'

 password ← USERINPUT

 fileHandle ← OPEN('a.txt')

 REPEAT

 nextU ← READLINE(fileHandle)# read next username

 nextP ← READLINE(fileHandle)# read next password

 IF nextU = username THEN

 IF nextP = password THEN

 match ← True

 ENDIF

 ENDIF

 UNTIL EndOfFile OR match

 CLOSE(fileHandle)

 IF match THEN

 OUTPUT 'Welcome'

 ELSE

 OUTPUT 'Username and/or password not found'

 ENDIF

 UNTIL match

Figure 2.11.4 User authentication
with file of usernames and passwords

Information
Note: file handling has been omitted
from AQA’s CS specification 8525.

Institution licence - St Martins School Essex

2.11 Robust and secure programming

151

Testing
If you have just written a program to convert raw examination marks into grades you will want to convince yourself
that your program does just that accurately.
You know that a raw mark can be any integer between 0 and 100 but do you want to test that your program works
for every integer in this range?
This is the dilemma facing every programmer: "How to test the reliability of their programs? "
It is all too easy to settle on checking that your program works for a couple of raw marks but this is insufficient to
adequately test your program.
You need to be more systematic, but you also need to be realistic and accept that for all but the simplest of
programs you will not always be able to test your program on every possible input value.
In Figure 2.11.5, after the raw mark has been
checked to be in the range 0 to 100, inclusive,
there are two possible pathways through the IF
THEN ELSE ENDIF code section - the path
for which

rawMark ≥ 50

is True and the one for which it is False.

We need to select test data that tests that each
pathway is followed as expected.

Being systematic about testing means that we
should record what tests we plan to carry out
and the results of applying these tests.
It is convenient to do this as shown in Table
2.11.2.

Programming tasks
In a text editor create a file of usernames and passwords containing ten lines of text with
content as shown in Table 2.11.1. The structure is username followed by its associated
password, e.g. 'mary' followed on the next line by 'contrary5@#'. Save this text file as
a.txt.
In a programming language familiar to you, write a program which implements the
pseudo-code in Figure 2.11.4.
Check that your program works correctly with a sample of usernames from Table 2.11.1
and their matching passwords.
Check that your program rejects the following:
• username correct but password incorrect
• username entered not present in Table 2.11.1.

3 Test data
fred
letmein
mary
contrary5@#
ahmed
pass67%&
khiat
sooty58£
ashmira
opensesame
Table 2.11.1

Converting raw mark to grade
 valid ← True
 REPEAT
 OUTPUT 'Input your raw mark (0-100):'
 rawMark ← USERINPUT # Integer variable rawMark
 IF (rawMark < 0) OR (rawMark > 100) THEN
 OUTPUT 'Raw mark needs to be between 0 and 100'
 valid ← False
 ENDIF
 UNTIL valid
 IF rawMark ≥ 50 THEN
 grade = 'PASS'
 ELSE
 grade = 'FAIL'
 ENDIF
 OUTPUT 'Grade'
 OUTPUT grade

Figure 2.11.5

Table 2.11.2 Incomplete test plan for pseudo-code shown in Figure 2.11.4

Test
 number

Description
Input
data

Expected
outcome

Actual
outcome

Test
passed?

1 Test for the correct result when raw mark is greater than 50 75 PASS PASS

2 Test for the correct result when raw mark is less than 50 25 FAIL FAIL

3 Test for the correct result when raw mark is 50 50 PASS PASS

Information
Note: file handling has been omitted
from AQA’s CS specification 8525.

Institution licence - St Martins School Essex

2 Programming

152

The incomplete test plan shown in Table 2.11.2 has three test cases: raw marks 75, 50 and 25.

• The test datum 75 sits in the middle of the PASS grade raw mark range.
For this reason, it is considered representative of a set of data which we call normal or typical test data.

• The test datum 25 sits in the middle of the FAIL grade raw mark range.
For this reason it is also considered representative of a set of data which we call normal or typical test data.

• The test datum 50 sits on the boundary between the PASS and the FAIL grade raw mark ranges.
For this reason it is considered representative of a set of data which we call boundary or extreme test data.

We cannot exhaustively test a program (except the most trivial) with every possible datum so we classify test data
into representative sets and use a few values from each set for testing.
If they are truly representative sets then a test result for one datum from a set should be representative of the test
results for all data in the set.
The challenge is to pick a test case (instance of a test datum) which will do for all data in a particular set.
Boundary (extreme) test data

It is a well-known fact that programmers are prone to getting a boundary
condition wrong, e.g. writing rawMark > 50 when they meant to write
rawMark ≥ 50 as shown in Figure 2.11.6.

Table 2.11.3 shows an updated test plan with three boundary test cases
whereas before there was only one. When this test plan is applied to the
modified pseudo-code shown in Figure 2.11.6 test case 3 reveals the
presence of an error.

It is a well-accepted fact that, in general, testing a program can never adequately
prove or demonstrate the correctness of the program.
All that testing can hope to do is reveal the existence of errors as we have done
and shown in Table 2.11.3.
The purpose of testing is to find errors.
However, it is not the purpose of testing to find solutions to errors discovered,
that is the job of debugging.

Table 2.11.3 Updated but incomplete test plan for pseudo-code shown in Figure 2.11.6

Test
 number

Description
Input
data

Expected
outcome

Actual
outcome

Test
passed?

1 Test for the correct result when raw mark is greater than 50 75 PASS PASS

2 Test for the correct result when raw mark is less than 50 25 FAIL FAIL

3 Test for the correct result when raw mark is 50 50 PASS FAIL

4 Test for the correct result when raw mark is 51 51 PASS PASS

5 Test for the correct result when raw mark is 49 49 FAIL FAIL

Raw mark to grade
 IF rawMark > 50 THEN
 grade = 'PASS'

 ELSE

 grade = 'FAIL'

 ENDIF

 OUTPUT 'Grade'

 OUTPUT grade

Figure 2.11.6 Modified pseudo-code

Key fact
Testing a program can never
adequately prove or demonstrate
the correctness of the program.
Generally speaking, testing
can only reveal the existence of
errors.

Key term
Test case:
Specific sets of data are chosen
to test a program to reveal
errors. These sets of data are
known as test data and each test
is known as a test case.

Institution licence - St Martins School Essex

2.11 Robust and secure programming

153

Erroneous test data

There is a third type of test data called erroneous data.
This is data that is invalid e.g. a letter of the alphabet is entered when an integer is expected or the value entered is
outside the accepted range.
For example, in the pseudo-code in Figure 2.11.7 because rawMark is a variable of data type integer, an implicit
conversion from string input to integer takes place by the action of statement

rawMark ← USERINPUT, e.g. '75' to 75

However, if the input is, say, 'seventy five' or any string value containing non-digits, then the conversion will fail,
and if the pseudo-code has been coded in an actual programming language, the program will probably crash.
In the pseudo-code in Figure 2.11.7 the value entered for rawMark is required to be in the range 0 - 100 inclusive,
so a value such as 200 which clearly isn’t would belong in the category of erroneous data.

Questions

Draw up a test plan that relies on normal and boundary data to adequately test, using integer input, the
pseudo-code shown in Figure 2.11.7.

6

 valid ← True

 REPEAT

 OUTPUT 'Input your raw mark (0-100):'

 rawMark ← USERINPUT # Integer variable rawMark

 IF (rawMark < 0) OR (rawMark > 100) THEN

 OUTPUT 'Raw mark needs to be between 0 and 100'

 valid ← False

 ENDIF

 UNTIL valid
Figure 2.11.7

Key term

The design of test cases can be
classified as follows:

Normal test data:
Typical values.
Boundary test data:
Test cases designed to probe
the boundary regions: just valid
(on the boundary and just
inside the boundary) and just
invalid values (just outside the
boundary) are tried.

Erroneous test data:
Data that is invalid e.g. a letter
of the alphabet is entered when
an integer is expected, or an out
of range value.

Questions
(a) Modify the pseudo-code shown in Figure 2.11.8 so that input of
erroneous data will be trapped. Use TRY CATCH ENDTRY.

(b) Draw up a test plan that relies on just erroneous data to test that
your modified pseudo-code does now trap a conversion error.

7

 REPEAT

 valid ← True

 OUTPUT 'Input your raw mark (0-100):'

 rawMark ← USERINPUT # Integer variable rawMark

 IF (rawMark < 0) OR (rawMark > 100) THEN

 OUTPUT 'Raw mark needs to be between 0 and 100'

 valid ← False

 ENDIF

 UNTIL valid
Figure 2.11.8

Institution licence - St Martins School Essex

2 Programming

154

Designing test cases

Test cases should be chosen to find errors.
The starting point is the specification of what the program is supposed to do.
Table 2.11.4 shows a specification for a program which tests three integers to see if they can be the lengths of sides
of a triangle.

The analysis given for the program specification shown in Table 2.11.4 shows how challenging and time-consuming
designing test cases can be.

When designing test cases you should consider trying to find if the program:

• fails to do what it is supposed to do, e.g. output False for a = 3, b = 3, c = 6 because this cannot be a
triangle - a ≤ b ≤ c, but a + b > c is not true.

• fails to trap input which the logic of the program is not designed for or fails in its logic to cater for all
logical pathways through the program.
Figure 2.11.9 shows pseudo-code for a
program that fails to prevent n being less
than 0 because it has omitted to test for
n < 0. This section of code is to be used
in a program that needs n to be an integer
between 0 and 100, inclusive.

• fails to trap and report invalid input, e.g. a
letter of the alphabet is entered when the program expects an integer or input not in the expected range.
For example, if the string ‘12.5’ is entered when exercising the pseudo-code in Figure 2.11.9 a string
conversion error will occur because '12.5' is not a valid integer string.

• works as expected with normal, typical data, e.g. a = 3, b = 4, c = 5 for the program specified in Table
2.11.4.

Program specification

Description
Program determines whether each triplet of numbers can be the length of the sides of a triangle.
Each triplet of numbers must satisfy the triangle condition: a + b > c, a + c > b, b + c > a.
For example, a = 3, b = 4, c = 5 is a valid triangle

Input A triplet of positive integers excluding zero, a, b, c. For example, a = 3, b = 4, c = 5

Output True if triplet of numbers can be the length of the sides of a triangle, False otherwise

Analysis

If a ≤ b ≤ c then the triplet satisfies the triangle condition if and only if a + b > c
If b ≤ a ≤ c then the triplet satisfies the triangle condition if and only if a + b > c
If a ≤ c ≤ b then the triplet satisfies the triangle condition if and only if a + c > b
If c ≤ a ≤ b then the triplet satisfies the triangle condition if and only if a + c > b
If b ≤ c ≤ a then the triplet satisfies the triangle condition if and only if b + c > a
If c ≤ b ≤ a then the triplet satisfies the triangle condition if and only if b + c > a

Table 2.11.4 Program specification

 valid ← True
 REPEAT
 OUTPUT 'Input an integer (0-100):'
 n ← USERINPUT # Integer variable n
 IF (n > 100) THEN
 OUTPUT 'n needs to be between 0 and 100'
 valid ← False
 ENDIF
 UNTIL valid

Figure 2.11.9

Institution licence - St Martins School Essex

2.11 Robust and secure programming

155

Program errors - syntax and logic
Two types of program error are syntax error and logic errror.
Syntax error

A statement in the program violates a rule of the language; this could be a simple misspelling of a keyword, a missed
punctuation mark, or a wrongly formed statement. For example,

Console.Writelinne("Hello World);

(misspelt keyword - WriteLine - and missing quote-mark)
Logic error

The program runs but gives the wrong answer or performs wrongly in some way (excluding ‘crashing’ which is
another error condition called a run-time error). For example, the programmer writes

NetWage = GrossWage + Tax;

when the statement should have been written

NetWage = GrossWage - Tax;

Questions
(a) The pseudo-code in Figure 2.11.10 is written to make sure that the user enters a value within a given

range.
Tick the set of test data that is the most appropriate to check that the code works as expected.

(b) Why is the set of test data that you have chosen in Question 8(a) likely to be enough to show that the
code in Figure 2.11.10 works as expected?

A program to calculate car insurance premiums uses information from a guidance table, Table 2.11.5, to
decide the loading to apply to an insurance policy. Age is an integer.
Write test cases to adequately test that the program applies the guidance correctly to integer input.

8

 n ← USERINPUT # Integer variable n
 WHILE (n < 0) OR (n > 10)
 OUTPUT 'Not in range 0 to 10'
 n ← USERINPUT
 ENDWHILE Figure 2.11.10

Test data
Tick one

box
-1, 0, 9, 10
0, 1,10, 11

-1, 0,10, 11
0, 1, 9, 10

Age Message
>=21 Policy loaded by 10%
< 21 Policy loaded by 50%

Table 2.11.5

9

Programming task
In a programming language familiar to you, write a program which implements the program specification
shown in Table 2.11.4. Use the equivalent in your programming language of TRY CATCH ENDTRY
where appropriate.
Draw up a test plan and test that your program is as error-free as you are able to make it.
Why is it a good idea to draw up and use your test plan as early as possible in the development of your
program?

4

Institution licence - St Martins School Essex

2 Programming

156

In this chapter you have covered:

 ■ Writing simple data validation routines

 ■ Writing simple authentication routines

 ■ What is meant by testing in the context of algorithms and programs

 ■ Correcting errors within algorithms and programs

 ■ What test data is and the types of test data:

• normal (typical)

• boundary (extreme)

• erroneous data

 ■ Selecting suitable test data that covers normal (typical), boundary (extreme) and erroneous data

 ■ Justifying the choice of test data

 ■ The different types of error:

• syntax error

• logic error

 ■ Identifying and categorising errors within algorithms and programs.

Questions
(a) The pseudo-code shown in Figure 2.11.11 contains a single syntax error and a single logic error.
What are these?

The pseudo-code shown in Figure 2.11.12 is supposed to output the product of a sequence of integers
greater than 1 but it doesn’t because it contains a logic error. What is this logic error?

10

11

 valid ← True

 REPEAT

 OUTPUT 'Input rating (1-10):'

 rating ← USERINPUT # Integer variable rating

 IF (rating < 1) OR (rating >= 10) THEN

 OUTPUT 'Rating needs to be between 1 and 10'

 valid ← Falsse

 ENDIF

 UNTIL valid
Figure 2.11.11

 product ← 1

 REPEAT

 OUTPUT 'Input next integer greater than one (0 to exit): '

 nextInteger ← USERINPUT

 product ← product * nextInteger
 UNTIL nextInteger = 0

 OUTPUT 'Product = '

 OUTPUT product Figure 2.11.12

Institution licence - St Martins School Essex

157

 ■ 3.1 Number bases

Meaning of number base
The number base system specifies how many digits are used in constructing a
numeral (representation of a number) and by how much to multiply each digit.

For example, in the decimal system the numeral 734 is interpreted as meaning

7 × 100 + 3 × 10 + 4 × 1
Decimal (base 10)
The number base of the decimal system is ten because it has ten digits 0, 1, 2,

3, 4, 5, 6, 7, 8, 9 and the digit multiplier is a power of ten, 10n where n is

… −3, −2, −1, 0, 1, 2 , 3, …

The number represented by the numeral 734 in base 10 is constructed using
the place values indicated in Table 3.1.1 as follows

7 × 100 + 3 × 10 + 4 × 1

To indicate the base we can use a subscript attached to the numeral, e.g. 73410.

Binary (base 2)1

The number base of the binary system is two because it has two digits 0, 1 and
the digit multiplier is a power of two, 2n where n is … −3, −2, −1, 0, 1, 2 , 3, …

The number in decimal represented by the binary numeral 10111 is constructed
using the place values in Table 3.1.2 as follows

1 × 16 + 0 × 8 + 1 × 4 + 1 × 2 + 1 × 1
To indicate the base we use a subscript attached to the numeral, e.g. 101112.

Now the quote “There are 10 types of people in the world those that
understand binary and those that don’t” might make more sense because

10Binary = 2Decimal

1 There is more on binary in Chapter 3.2. For the exam you will only have to
work with whole numbers up to 255 in decimal.

Learning objectives:

 ■ Understand the following
number bases

• decimal (base 10)

• binary (base 2)

• hexadecimal (base 16)

 ■ Understand that computers
use binary to represent all data
and instructions

 ■ Explain why hexadecimal is
often used in computer science.

3 Fundamentals of data representation
3 Fundamentals of data representation

… 102 101 100 …
… 100 10 1 …

7 3 4

Table 3.1.1 Place values for the decimal system

… 24 23 22 21 20 …
… 16 8 4 2 1 …

1 0 1 1 1

Table 3.1.2 Place values for the binary system
Key concept

Binary:
The number base of the binary
system is two because it has
two digits 0, 1 and the digit
multiplier is a power of two, 2n
where n is
…, −3, −2, −1, 0, 1, 2 , 3, …

Key concept
Decimal:
The number base of the decimal
system is ten because it has ten
digits 0, 1, 2, 3, 4, 5, 6, 7, 8,
9 and the digit multiplier is a
power of ten, 10n where n is
…, −3, −2, −1, 0, 1, 2 , 3, …

Key point
To indicate the base we use
a subscript attached to the
numeral, e.g. 73410.

Information
Base 10 system is an example
of a positional number system.
This type of system was first
used by the Babylonians over
4000 years ago in Mesopotamia,
modern day Iraq. Positional
number systems are good for
doing arithmetic with.

Institution licence - St Martins School Essex

3 Fundamentals of data representation

158

Hexadecimal (base 16)2

The number base of the hexadecimal system is sixteen because it has sixteen digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,

D, E, F and the digit multiplier is a power of sixteen, 16n where n is …, −3, −2, −1, 0, 1, 2 , 3, …

The number in decimal represented by the hexadecimal numeral D4 is constructed using the place values in Table
3.1.4 as follows

13 × 16 + 4 × 1

where D has been replaced by 13.

The hexadecimal digits A, B, C, D, E and F are, in decimal, 10, 11, 12, 13, 14
and 15 respectively.

The number in decimal represented by the hexadecimal numeral 38AD4 is
constructed using the place values in Table 3.1.5 as follows

3 × 65536 + 8 × 4096 + 10 × 256 + 13 × 16 + 4 × 1

To indicate the base we use a subscript attached to the numeral, e.g. 38AD416.

2 There is more on hexadecimal in Chapter 3.2. For the exam you will only have to work with whole numbers up to 255
in decimal.

Key concept

Hexadecimal:
The number base of the
hexadecimal system is sixteen
because it has sixteen digits 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, F and the digit multiplier
is a power of sixteen, 16n where
n is
…, −3, −2, −1, 0, 1, 2 , 3, …

… 161 160 …
… 16 1 …

D 4

Table 3.1.4 Place values for
the hexadecimal system

… 164 163 162 161 160 …
… 65536 4096 256 16 1 …

3 8 A D 4

Table 3.1.5 Some more place values for the hexadecimal system

Questions

What is the decimal equivalent of the binary number 11001 shown in
Table 3.1.3?

The bit pattern 11001 in Table 3.1.3 is replaced by the bit pattern
11111 representing another number.
What is the decimal equivalent of this number?

1

2

24 23 22 21 20

16 8 4 2 1

1 1 0 0 1

Table 3.1.3

Questions
What is the decimal equivalent of the hexadecimal number 51CBE shown in Table 3.1.6?

The hexadecimal number 51CBE in Table 3.1.6 is replaced by the hexadecimal number FFFFF
representing another number. What is the decimal equivalent of this number?

3

4

164 163 162 161 160

65536 4096 256 16 1

5 1 C B E

Table 3.1.6

Institution licence - St Martins School Essex

3.1 Number bases

159

Binary is used to represent all data and instructions
Figure 3.1.1 shows executable binary codes called machine code
instructions.

These executable binary codes or bit patterns instruct computer
hardware to carry out some machine task, e.g. ADD two numbers
and display the result on the screen of the visual display unit.

The language of computer hardware is binary, i.e. binary codes or
bit patterns that the hardware can interpret in a meaningful way as
data or instructions.

For example, the bit pattern 10010111 could represent

• a machine instruction
• an integer
• an item of text, e.g. the letter 'A'
• a pixel of a bitmap image
• a part of a sound file.

When a computer program is downloaded from the Internet it streams into
your computer as a sequence of bit patterns. These bit patterns could represent
any of the above.

In fact, if the bit pattern stream is downloaded as an attachment to an email it
could be a computer virus. The virus arrives as data but ends up being executed
as machine code which potentially does nasty things to your computer.

Why is hexadecimal used?
Hexadecimal as shorthand for binary

Long strings of 1s and 0s are difficult for a human to work with so
programmers often switch to the hexadecimal equivalent because it is much
easier to work with.

Compare Figure 3.1.1 and Figure 3.1.2 which show respectively, a sample of
machine code and its hexadecimal equivalent.

If the strings of 1s and 0s represent executable code then debugging this code is
much easier if the code is displayed in hexadecimal form.

Its meaning is easier to determine than its binary form.

Similarly, writing numbers in hexadecimal form is less error prone than writing
the same numbers in binary especially if the binary form consists of long strings
of 1s and 0s.

Figure 3.1.2 The
same machine

code expressed in
hexadecimal

Figure 3.1.1 Machine code displayed in
binary

Information
Debugging:
Debugging software means to
identify and remove errors from
the software.
Maurice Wilkes, computing
pioneer:
“By June 1949, people had
begun to realize that it was not
so easy to get a program right
as had at one time appeared.
It was on one of my journeys
between the EDSAC1 (World’s
first stored program digital
computer) room and the
punching equipment (programs
were submitted on punched
cards) that the realization came
over me with full force that a
good part of the remainder of
my life was going to be spent
in finding errors in my own
programs.”

Question

The stream of bit patterns 11110010...10101101 consists of several
thousand binary digits i.e. 1s and 0s of data.
State three possible things that this stream might represent.

5

Institution licence - St Martins School Essex

3 Fundamentals of data representation

160

For example, it would be cumbersome and error prone to specify the colour for
text on a page of HTML in 24 binary digits, better to use the shorthand form
of hexadecimal, e.g. #1F040A.

Here the # symbol is used to indicate that the numeral is in hexadecimal.

The contents of memory or registers of a computer system can be displayed
for debugging purposes. It is usual for the software that is used for debugging
to display these contents in hexadecimal because it is much easier for a human
to read the numbers in this form as well as taking up less space on the display
screen.

Software is needed because the numbers are actually stored in memory
locations and registers in base 2 form.

Memory addresses are more conveniently expressed in hexadecimal than binary.
For example, the memory limit of Windows 7 is 4 GiB. This requires the use of
32 binary digits to express the address of a particular memory word or location
but in hexadecimal it requires only 8 hexadecimal digits. Incidently, it would
require 10 decimal digits.

However, hexadecimal is more suitable when working with digital hardware
than decimal because hexadecimal uses 4x fewer digits than binary (³²⁄₄) but
decimal uses 3.2x fewer (³²⁄₁₀), an awkward factor to work with.

In this chapter you have covered:

 ■ The following number bases

• decimal (base 10)

• binary (base 2)

• hexadecimal (base 16)

 ■ That computers use binary to represent all data and instructions

 ■ Why hexadecimal is often used in computer science.

Information
In some programming
languages, e.g. Java, a number
represented in hexadecimal is
indicated by placing 0x before
the numeral, e.g. 0x3C4.

Information
GiB:
The unit of storage GiB or
GigaByte is 220 bytes

Key point

Long strings of 1s and 0s are
difficult for a human to read
so programmers often switch
to the hexadecimal equivalent
because it is

• much easier to read
• more compact,
 4x fewer digits
• less error prone
• easier to debug code
 expressed in hexadecimal.

Question

What is wrong with this statement:
“Hexadecimal is often used instead of binary in a computer’s memory
because it is more compact.”?

6

Institution licence - St Martins School Essex

161

 ■ 3.2 Converting between number bases

Converting from decimal to binary
Method 1

Using the place values in Table 3.2.1, take the decimal number to be converted
and find between which two column place values it lies, e.g. 3510 lies between
columns with place values 32 and 64, respectively.

Place 1 in the column with the lower of the two place values and 0 in the
higher of the two as shown in Table 3.2.1.

With the given example, take the place value 32 away from the decimal
number, leaving 310. Place 0 in all the columns with place values greater than
310. It is then trivial to see that we need one 2 and one 1 to match 310.

Method 2 - the method of successive division

Take the decimal number and repeatedly divide by 2 writing down the
remainder each time as shown in Table 3.2.2, stopping when zero is reached.

The binary equivalent of 3510 is read from the remainder column beginning at
the last row and working up the table.

Learning objectives:

 ■ Understand how binary can
be used to represent whole
numbers

 ■ Understand how hexadecimal
can be used to represent whole
numbers

 ■ Be able to convert in both
directions between:

• binary and decimal

• binary and hexadecimal

• decimal and
hexadecimal.

3 Fundamentals of data representation
3 Fundamentals of data representation

Information

Throughout this chapter you
may find Microsoft® Windows’
calculator in programmer mode
a handy tool with which to
explore the relationship between
decimal and binary, decimal and
hexadecimal.

… 26 25 24 23 22 21 20 …
… 64 32 16 8 4 2 1 …

0 1 0 0 0 1 1

Table 3.2.1 Some place values for the binary system and the binary
representation of decimal 35

Questions
Convert the following numbers expressed in decimal to their binary
equivalent using Method 1.

 (a) 3310 (b) 2410 (c) 5810 (d) 12710

1

Quotient New number Remainder
35/2 17 1
17/2 8 1
8/2 4 0
4/2 2 0
2/2 1 0
1/2 0 1

Table 3.2.2 Successive division by 2 method

Key method

Example:
Decimal to decimal by
successive division, picks out
the individual digits
e.g. n = 46210

n n⁄₁₀ r
462 46 2
46 4 6
4 0 4

Where r is the remainder.
The remainder supplies the
individual digits, one at a time,
e.g. 2.

Institution licence - St Martins School Essex

3 Fundamentals of data representation

162

Converting from binary to decimal
See Chapter 3.1.

Converting from decimal to hexadecimal
We can use the method of successive division similar to the one used for decimal to binary
conversions, this time dividing by 16. Table 3.2.3 shows a worked example for n = 24910 . The
last column is read from the last row upwards giving F916.

Converting from hexadecimal to decimal
See Chapter 3.1.

Converting from hexadecimal to binary
This can be done in a straightforward way as follows:

Write down the number in hexadecimal

Replace each hexadecimal digit by its binary

equivalent using 4 binary digits

Figure 3.2.1 shows how this can be done with the example of B47A16

giving the result

B47A16 = 10110100011110102

The method relies on the fact that the hexadecimal digits 0 to F map to 0 to 15 in decimal and this decimal range
can be coded by just four binary digits. When a number represented in four binary digits is multiplied by 1610, it
becomes a number represented by eight binary digits with zeroes in the least significant four bit positions, twelve
binary digits when multiplied by 1610 again and so on.

Questions
Convert the following numbers expressed in decimal to their binary equivalent using Method 2.
Show the intermediate results in a table with structure similar to Table 3.2.2.

 (a) 3310 (b) 2410 (c) 5810 (d) 12710

2

Questions
Convert the following numbers expressed in decimal to their hexadecimal equivalent using the method
described above. Show the intermediate results in a table with structure similar to Table 3.2.3.

 (a) 4710 (b) 12710 (c) 18910 (d) 25510

3

B47A

1011 0100 0111 1010

Figure 3.2.1 Hexadecimal to binary

Questions
Convert the following numbers expressed in hexadecimal to their binary equivalent using the method
described above.
 (a) 4716 (b) 3A216 (c) 6FE716 (d) BEEF16

4

Quotient New number Remainder
249/16 15 9
15/16 0 15(F)

Table 3.2.3 Successive division by 16 method

Institution licence - St Martins School Essex

3.2 Converting between number bases

163

Converting from binary to hexadecimal
This can be done in a straightforward way as follows:

Write down the number in binary

Add leading 0s to the left-hand side of the bit pattern so that the number of

bits is a multiple of 4 (if necessary)

Replace each block of four binary digits by their hexadecimal equivalent

Figure 3.2.2 shows how this can be done with the example of B47A16

giving the result

10110100011110102 = B47A16

Using binary to represent decimal whole numbers
Whole numbers are numbers without a fractional part. Whole numbers can be positive, negative or zero. In fact,
whole number is another name for an integer.

You are only required to be able to represent decimal whole number values between 0 to 255 in binary.

Table 3.2.4 shows some decimal whole number values and their equivalent representation in binary.

Table 3.2.5 shows eight bits and their place values. The maximum decimal whole number that can be represented
in these eights bits is 255. The binary representation of decimal 255 is 11111111 as shown in Table 3.2.5 and
calculated as follows

1 × 128 + 1 × 64 + 1 × 32 + 1 × 16 + 1 × 8 + 1 × 4 + 1 × 2 + 1 × 1 = 255

1011 0100 0111 1010

B47A
Figure 3.2.2 Binary to Hexadecimal

Questions

Convert the following numbers expressed in binary to their hexadecimal equivalent using the method
described above.
 (a) 11112 (b) 101011012 (c) 1011002 (d) 1100111000112

5

Decimal
value

Binary
value

Decimal
value

Binary
value �

Decimal
value

Binary
value

Decimal
value

Binary
value

0 00000000 8 00001000 � 240 11110000 248 11111000
1 00000001 9 00001001 � 241 11110001 249 11111001
2 00000010 10 00001010 � 242 11110010 250 11111010
3 00000011 11 00001011 � 243 11110011 251 11111011
4 00000100 12 00001100 � 244 11110100 252 11111100
5 00000101 13 00001101 � 245 11110101 253 11111101
6 00000110 14 00001110 � 246 11110110 254 11111110
7 00000111 15 00001111 � 247 11110111 255 11111111

Table 3.2.4 Table of binary codes in eight bits and their decimal equivalent values

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

1 1 1 1 1 1 1 1

Table 3.2.5 Place values for binary representing whole numbers between 0 and 255

Institution licence - St Martins School Essex

3 Fundamentals of data representation

164

Using hexadecimal to represent decimal whole numbers
You are only required to be able to represent decimal whole number values between 0 to 255 in hexadecimal.

Table 3.2.6 shows some decimal whole number values and their equivalent representation in hexadecimal.

Table 3.2.7 shows two hexadecimal digits and their place values. The maximum decimal whole number that can be
represented with two hexadecimal digits is 255. For this maximum number the hexadecimal representation is FF as
shown in Table 3.2.7 and calculated as follows

F × 16 + F × 1 = 15 x 16 + 15 x 1 = 240 + 15 = 255

In this chapter you have covered:

 ■ How binary can be used to represent whole numbers

 ■ How hexadecimal can be used to represent whole numbers

 ■ Converting in both directions between:

• binary and decimal

• binary and hexadecimal

• decimal and hexadecimal.

Questions
Express the following decimal whole numbers in binary using 8 bits.
 (a) 128 (b) 127 (c) 245 (d) 254

6

Decimal
value

Hexa-
decimal

value

Decimal
value

Hexa-
decimal

value
�

Decimal
value

Hexa-
decimal

value

Decimal
value

Hexa-
decimal

value
0 00 8 08 � 240 F0 248 F8
1 01 9 09 � 241 F1 249 F9
2 02 10 0A � 242 F2 250 FA
3 03 11 0B � 243 F3 251 FB
4 04 12 0C � 244 F4 252 FC
5 05 13 0D � 245 F5 253 FD
6 06 14 0E � 246 F6 254 FE
7 07 15 0F � 247 F7 255 FF

Table 3.2.6 Table of two digit hexadecimal codes and their decimal equivalent values

161 160

16 1

F F

Table 3.2.7 Place values for hexadecimal representing whole numbers between 0 and 255

Questions
Express the following decimal whole numbers in hexadecimal using two hexadecimal digits.
 (a) 128 (b) 127 (c) 245 (d) 254

7

Institution licence - St Martins School Essex

165

 ■ 3.3 Units of information

Information
We are surrounded in everyday life by information-carrying symbols or signs.
For example, road signs are an expression of information for road users.

In Figure 3.3.1(a) the information conveyed is of a factual kind. Figure
3.3.1(a) has the meaning, the road ahead narrows, that is a fact.

In Figure 3.3.1(b) the information conveyed is of a instructional kind. The
GIVE WAY sign has a meaning that is an instruction.

As “pretty” as symbols/signs may be, their purpose is not
decoration but instead it is communication of something. That
something is information.

We therefore separate the symbol from the information it carries.

The symbol is merely the carrier of information.

In digital computers, collections of binary digits or bits are used to
represent information and to convey information from one place
to another - Figure 3.3.2. Whilst in transit the bits are just data
(uninterpreted symbols). The bits are turned into information
when they are interpreted, i.e. when their meaning is extracted.

The bit streams in Figure 3.3.2 being downloaded could be for example, an
image or a computer program or a magazine article or a web page, etc.

The smallest unit of information being conveyed is a 0 or a 1, i.e. a Binary
digIT or bit, abbreviated to b.

Thus the bit is the smallest unit of information.

The meaning of a bit is not known until it is processed or interpreted, e.g. is it
part of an image or a program or a web page?

For convenience, bits are grouped together into a unit called a byte for which
the abbreviation B is used. A byte is 8 bits.

Learning objectives:

 ■ Know that:

• a bit is the fundamental
unit of information

• a byte is a group of 8 bits

 ■ Know that quantities of bytes
can be described using prefixes:

• kilo, 1 kB is 1,000 bytes
• mega, 1 MB is 1,000

kilobytes
• giga, 1 GB is 1,000

Megabytes
• tera, 1 TB is 1,000

Gigabytes

 ■ Be able to compare quantities
of bytes using the prefixes
above.

3 Fundamentals of data representation
3 Fundamentals of data representation

Figure 3.3.2 Two computing machines
communicating in binary

Figure 3.3.1 Some information-carrying road signs
(a) (b)

Key concept

Bit:
The bit is the fundamental unit
of information.
It is abbreviated to the symbol
b.

Byte:
A byte is a group of 8 bits.
It is abbreviated to the symbol
B.

Institution licence - St Martins School Essex

3 Fundamentals of data representation

166

Powers of 10
Figure 3.3.3 shows in red the decimal number corresponding to a
given power of 10. The power is known as the exponent. The exponent
specifies the number of zeroes in the decimal number.

To avoid writing out long strings of zeroes, the names, symbols and
corresponding powers of 10 are used as shown in Table 3.3.1.

Quantities of bytes
Storage device manufacturers measure capacity using
the decimal system (base 10), so 1 gigabyte (GB) is
calculated as exactly 1,000,000,000 bytes or 1 billion
bytes.
Figure 3.3.4 shows the reporting of the capacity of a
Western Digital hard disk.

Table 3.3.2 shows how to express a decimal numeral
which is a power of 10 in units of k, M, G and T.

If the decimal numeral refers to a quantity of bytes
then we can express the quantity using the units of k,
M, G and T.

Questions
State the information conveyed by the following symbols:

♩ ♪ He Ar

You might need to do some research to discover some of the answers.

State the number of bytes in 1111000010101100 .

1

2

Key concept
Information = data + meaning

Key concept
Datum:
A datum (plural data) is any
physical phenomenon or object
that carries information, e.g.
road sign object, speech.
There can be no information
without data. Data is how
information is represented.

Figure 3.3.4 Exterior of a hard disk
showing storage capacity of 160.0 GB

10000000000001012

10101 1

100102 2

1000103 3

10000104 4

100000105 5

1000000106 6

10000000107 7

100000000108 8

1000000000109 9

100000000001010 10

Power of
Ten

Decimal number Exponent

1000000000001011 11

12

Figure 3.3.3 Powers of 10
Table 3.3.1 Unit name, symbol and

corresponding power of 10

Name Symbol
Power of

10
kilo k 103

mega M 106

giga G 109

tera T 1012

Institution licence - St Martins School Essex

3.3 Units of information

167

Background

Historically, the terms kilobyte, megabyte, etc have often been used to represent powers of 2.
This rather confusing situation has been resolved by the gradual adoption of the International Electrotechnical
Commission (IEC) standard for binary prefixes, which specify the use of gigabyte (GB) to strictly denote
1000000000 bytes and gibibyte (GiB) to denote 1073741824 bytes. This standard is now part of the
International System of Quantities.
You are not required to know the powers of 2 alternative units. However, for the sake of completeness it is
included here.

Powers of 2
Table 3.3.3 shows decimal numbers expressed as powers of 2, their equivalent binary and the corresponding
unit. In 2 raised to the power of 10, 10 is known as the exponent. The exponents 10, 20, 30, 40 specify the
number of zeroes in the binary numeral.

Decimal
number

Power
of 10

Using
units

Using symbol
form of unit

for quantities
of bytes

Using named
unit for

quantities of
bytes

1000 103 1k 1kB 1 kilobyte
10000 104 10k 10kB 10 kilobytes
100000 105 100k 100kB 100 kilobytes
1000000 106 1M 1MB 1 megabyte
10000000 107 10M 10MB 10 megabytes
100000000 108 100M 100MB 100 megabytes
1000000000 109 1G 1GB 1 gigabyte
10000000000 1010 10G 10GB 10 gigabytes
100000000000 1011 100G 100GB 100 gigabytes
1000000000000 1012 1T 1TB 1 terabyte

Table 3.3.2 Quantities of bytes expressed in units k, M, G and T

Questions

Express the following decimal numerals in the form 10n

 (a) 1000 (b) 1000000 (c) 10000000

Convert the following quantities in bytes to kB
 (a) 1000 (b) 10000

Convert the following quantities in bytes to MB
 (a) 500000 (b) 2000000 (c) 30000000

3

4

5

Did you know?
Genetic information in the form of
genes are instructions which together
with other essential ingredients
serve the purpose of controlling
and guiding the development of
organisms.

Background
This picture of a tree stump is
an example of another type of
information, environmental
information. The concentric rings
visible in the wood of a cut tree
trunk provide information on the
age of the tree and the growing
conditions at the time a ring was laid
down. Here the information carrier
is a tree ring.

Decimal
number

Power
of 2

Binary number Unit

1024 210 10000000000 kibibyte
1048576 220 100000000000000000000 mebibyte
1073741824 230 1000000000000000000000000000000 gibibyte
1099511627776 240 100 tebibyte

Table 3.3.3 Some decimal numbers expressed as powers of 2

Institution licence - St Martins School Essex

3 Fundamentals of data representation

168

Background
To avoid writing out long strings of zeroes, the names, symbols and
corresponding powers of 2 are used as shown in Table 3.3.4.

If the binary numeral refers to a quantity of bytes then we can express the
quantity using the units of Ki, Mi, Gi and Ti as shown in Table 3.3.5.

B refers to byte.

In this chapter you have covered:

 ■ That:

• a bit is the fundamental unit of information

• a byte is a group of 8 bits

 ■ That quantities of bytes can be described using prefixes:

• kilo, 1 kB is 1,000 bytes

• mega, 1 MB is 1,000 kilobytes

• giga, 1 GB is 1,000 Megabytes

• tera, 1 TB is 1,000 Gigabytes

 ■ Comparing quantities of bytes using the prefixes above.

Decimal
number

Power
of 2

Using
units

Using symbol
form of unit

for quantities
of bytes

Using named
unit for

quantities of
bytes

1024 210 1Ki 1KiB 1 kibibyte
1048576 220 1Mi 1MiB 1 mebibyte
1073741824 230 1Gi 1GiB 1 gibibyte
1099511627776 240 1Ti 1TiB 1 tebibyte

Table 3.3.5 Quantities of bytes expressed in units

Key fact

kibi, Ki - 210

mebi, Mi – 220

gibi, Gi – 230

tebi, Ti – 240

kilo, k - 103

mega, M – 106

giga, G – 109

tera, T – 1012

Name Symbol Power of 2
kibi Ki 210

mebi Mi 220

gibi Gi 230

tebi Ti 240

Table 3.3.4 Unit name, symbol and
corresponding power of 2

Institution licence - St Martins School Essex

169

 ■ 3.4 Binary arithmetic

Adding two binary integers
The rules for adding numbers expressed in the binary numeral system are
basically the same as for any other system. We add the contents of each column
in turn, starting from the right with the least significant digit column and
moving progressively leftward. Any carry from a column must be added to the
sum of the digits in the next column as shown in Figure 3.4.1 which shows the
sum 011011002 + 001010102 of two 8-bit binary integers.

The basic rules are as follows

The last rule states that 12 + 12 = 102.

Learning objectives:

 ■ Be able to add together up to
three binary numbers

 ■ Be able to apply a binary shift
to a binary number

 ■ Describe situations where
binary shifts can be used.

3 Fundamentals of data representation
3 Fundamentals of data representation

27 26 25 24 23 22 21 20

0 1 1 0 1 1 0 0
0 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0

Least
significant digit

column
This column uses the rule

 02 + 02 + carry 12 = 12

This column uses the rule

 12 + 02 + carry 12 = 02 carry 12

This column uses the rule

 12 + 12 = 02 carry 12

This column uses the rule

 12 + 12 = 02 carry 12

Figure 3.4.1 Addition of two 8-bit binary integers

Carry 1 Carry 1 Carry 1

02 + 02 = 02

02 + 12 = 12

12 + 02 = 12

12 + 12 = 02, carry 12 to the next column
since there is no symbol for 2.

Information

You may find Microsoft®
Windows’ calculator in
programmer mode a handy tool
with which to convert between
binary and decimal and vice
versa.

Institution licence - St Martins School Essex

3 Fundamentals of data representation

170

If we have a carry from the previous column then the carry must be added to the sum of the two digits of the
current column. So we have the additional rules

Normally addition of two binary numerals representing unsigned binary integers is set out in the manner of the
example below

02 + 02 + carry 12 = 12

02 + 12 + carry 12 = 02 carry 12

12 + 02 + carry 12 = 02 carry 12

12 + 12 + carry 12 = 12 carry 12

 0 1 1 0 1 0 1 1

+ 0 0 0 1 1 0 1 1

 1 0 0 0 0 1 1 0

Questions
Complete the following sums

(a) 02 + 02 = (e) 02 + 02 + 12 =

(b) 02 + 12 = (f) 02 + 12 + 12 =

(c) 12 + 02 = (g) 12 + 12 + 12 =

(d) 12 + 12 =

Complete the following additions of two 4-bit binary integers:
 (a) 0 1 1 0 (b) 0 1 0 1

 + 0 0 0 1 + 0 1 0 1

Complete the following additions of two 8-bit binary integers:
 (a) 0 1 1 0 1 0 1 1 (b) 1 1 0 1 0 1 0 1

 + 0 0 0 1 1 0 1 1 + 0 0 0 1 1 1 0 1

1

2

3

Institution licence - St Martins School Essex

3.4 Binary arithmetic

171

Adding three binary integers
We add the contents of each column in turn, starting from the right with the least significant digit column and
moving progressively leftward. Any carry from a column must be added to the sum of the digits in the next column.

The basic rules are as follows

If we have a carry from the previous column then the carry must be
added to the sum of the three digits of the current column.

So we have the additional rules shown in Figure 3.4.2.

The last rule produces a carry of 102 not 12. In decimal this is a carry of
2 not 1.

Figure 3.4.3 shows the sum 011010002 + 001010102 + 010010112 of
three 8-bit binary integers.

27 26 25 24 23 22 21 20

0 1 1 0 1 0 0 0
0 0 1 0 1 0 1 0
0 1 0 0 1 0 1 1
1 1 0 1 1 1 0 1Carry 1Carry 1Carry 1Carry 1

This column uses the rule

 02 + 02 + 12 = 12

This column uses the rule

 02 + 02 + 02 + carry 12 = 12

This column uses the rule

 12 + 12 + 02 = 02 carry 12

This column uses the rule

 02 + 02 + 02 + carry 12 = 12

This column uses the rule

 12 + 02 + 12 + carry 12 = 12 carry 12

This column uses the rule

 12 + 12 + 12 = 12 carry 12

This column uses the rule

 02 + 12 + 12 = 02 carry 12

Figure 3.4.3 Addition of three 8-bit binary integers

02 + 02 + 02 = 02

02 + 02 + 12 = 12

02 + 12 + 02 = 12

12 + 02 + 02 = 12

02 + 12 + 12 = 02, carry 12 to the next column
12 + 02 + 12 = 02, carry 12 to the next column
12 + 12 + 02 = 02, carry 12 to the next column
12 + 12 + 12 = 12, carry 12 to the next column 02 + 02 + 02 + carry 12 = 12

02 + 02 + 12 + carry 12 = 02 carry 12

02 + 12 + 02 + carry 12 = 02 carry 12

12 + 02 + 02 + carry 12 = 02 carry 12

02 + 12 + 12 + carry 12 = 12 carry 12

12 + 02 + 12 + carry 12 = 12 carry 12

12 + 12 + 02 + carry 12 = 12 carry 12

12 + 12 + 12 + carry 12 = 02 carry 102

Figure 3.4.2 Additional rules that apply
to the addition of three binary digits

Institution licence - St Martins School Essex

3 Fundamentals of data representation

172

Normally addition of three binary numerals representing binary integers is set out in the manner of the example
below

Of course, there is nothing to stop you adding two of the three binary numbers first and then adding the third to
the result!

Shifting bits in a binary number
A shift operation takes two inputs, one the number of shifts to apply, n, and the other the bit pattern to be shifted
by n bits. For example, the bit pattern in Figure 3.4.4 (a) when shifted by one bit to the left becomes the bit
pattern shown in Figure 3.4.4(b).
The least significant bit position is filled with 0. The most significant bit is shifted out and discarded.

Figure 3.4.4 is an example of a shift left operation.
With a shift right the bit pattern is moved to the right with the most significant bit position replaced by a zero.
The least significant bit is shifted out and discarded.

 0 1 1 0 1 0 0 0

 0 0 1 0 1 0 1 0
+ 0 1 0 0 1 0 1 1

 1 1 0 1 1 1 0 1

Questions
Complete the following sums

(a) 02 + 02 + 12 = (d) 02 + 02 + 12 + 12 =
(b) 02 + 12 + 12 = (e) 02 + 12 + 12 + 12 =
(c) 12 + 12 + 12 = (f) 12 + 12 + 12 + 12 =

Complete the following additions of three 4-bit binary integers:
 (a) 0 1 1 0 (b) 0 1 1 1

 0 0 0 1 0 1 0 1

 + 0 1 1 0 + 0 0 0 1

Complete the following additions of three 8-bit binary integers:
 (a) 0 1 1 0 1 0 1 1 (b) 0 1 0 1 0 1 0 1

 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1

 + 0 0 0 1 1 0 0 0 + 0 1 1 0 1 0 0 1

4

5

6

0 0 1 1 0 1 1 0Figure 3.4.4(a) 8-bit bit pattern before it is shifted left one bit

0 1 1 0 1 1 0 0Figure 3.4.4(b) 8-bit bit pattern after it is shifted left one bit

1 0 1 1 0 1 1 0Figure 3.4.5(a) 8-bit bit pattern before it is shifted right one bit

0 1 0 1 1 0 1 1Figure 3.4.5(b) 8-bit bit pattern after it is shifted right one bit

Institution licence - St Martins School Essex

3.4 Binary arithmetic

173

Situations where binary shifts are used
Multiplying by 2

The 8-bit binary number 00110110 shown in Figure 3.4.6(a) represents the decimal number 54.

00110110 = 0 x 27 + 0 x 26 + 1 x 25 + 1 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20

 = 0 x 128 + 0 x 64 + 1 x 32 + 1 x 16 + 0 x 8 + 1 x 4 + 1 x 2+ 0 x 1

 = 54

Multiplying this decimal number by 2 we obtain 108.

108 = 0 x 128 + 1 x 64 + 1 x 32 + 0 x 16 + 1 x 8 + 1 x 4 + 0 x 2+ 0 x 1

 = 0 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 0 x 20

 = 01101100

One left shift operation on the binary number in Figure 3.4.6(a) results in the binary number 01101100 (Figure
3.4.6(b)), which is in decimal 108, because

0 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 0 x 20 = 108

Thus one left shift operation is equivalent to multiplying by 2.

Two left shift operations is equivalent to multiplying by 2 x 2, i.e. 4 (22).

The resulting binary number from two left shift operations is 11011000.

In decimal, 11011000 = 1 x 27 + 1 x 26 + 0 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 0 x 21 + 0 x 20

 = 1 x 128 + 1 x 64 + 0 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 0 x 2 + 0 x 1

 = 216

However, this goes wrong when a left shift is applied to a binary number with 1 in the most significant position,
e.g. the binary number 11011000 which we have just calculated to be 216 in decimal.

Applying a left shift to 11011000 results in 10110000, i.e. 11011000 ↦ 10110000

But 10110000 = 1 x 27 + 0 x 26 + 1 x 25 + 1 x 24 + 0 x 23 + 0 x 22 + 0 x 21 + 0 x 20

 = 1 x 128 + 0 x 64 + 1 x 32 + 1 x 16 + 0 x 8 + 0 x 4 + 0 x 2 + 0 x 1

 = 176

Doubling 216 produces 432 not 176. Decimal number 432 is too big to be represented in 8 bits which is why the
left shift operation fails.

Questions

Show the binary number that results from 3 left shift operations on
the binary number in Figure 3.4.7.

Show the binary number that results from 3 left shift operations on
the binary number in Figure 3.4.8. Comment on the result.

7

8

0 0 0 1 0 1 1 1

Figure 3.4.7

0 0 1 0 0 1 1 1

Figure 3.4.8

0 0 1 1 0 1 1 0Figure 3.4.6(a) 8-bit bit pattern before it is shifted left one bit

0 1 1 0 1 1 0 0Figure 3.4.6(b) 8-bit bit pattern after it is shifted left one bit

27 26 25 24 23 22 21 20

Institution licence - St Martins School Essex

3 Fundamentals of data representation

174

Dividing by 2

The 8-bit binary number 11011000 shown in Figure 3.4.9(a) represents the decimal number 216.

11011000 = 1 x 27 + 1 x 26 + 0 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 0 x 21 + 0 x 20

 = 1 x 128 + 1 x 64 + 0 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 0 x 2 + 0 x 1

 = 216

Dividing this decimal number by 2 we obtain 108.

108 = 0 x 128 + 1 x 64 + 1 x 32 + 0 x 16 + 1 x 8 + 1 x 4 + 0 x 2+ 0 x 1

 = 0 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 0 x 20

 = 01101100

One right shift operation on the binary number in Figure 3.4.9(a) results in the binary number 01101100, in
decimal 108, because

0 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 0 x 20 = 108

Thus one right shift operation is equivalent to dividing by 2.

Two right shift operations is equivalent to dividing by 2 x 2, i.e. 4 (22).

The resulting binary number from two right shift operations is 00110110.

Table 3.4.1 shows successive divisions by 2
applied to the starting decimal number 216
and then the resulting decimals.

The division by 2 is a type of division called
integer division.

In this division, the result is an integer
(whole number).

For the odd decimals, 27, 13, 3 and 1, the
result is a whole number and a non-zero
remainder. Remainders are either 0 or 1.

1 1 0 1 1 0 0 0Figure 3.4.9(a) 8-bit bit pattern before it is shifted left one bit

0 1 1 0 1 1 0 0Figure 3.4.9(b) 8-bit bit pattern after it is shifted left one bit

27 26 25 24 23 22 21 20

Decimal no
before single

right shift
operation

Binary no
Before

Binary no
After

Decimal no
after single
right shift
operation

Remainder
after

division

216 11011000 01101100 108 0
108 01101100 00110110 54 0
54 00110110 00011011 27 0
27 00011011 00001101 13 1
13 00001101 00000110 6 1
6 00000110 00000011 3 0
3 00000011 00000001 1 1
1 00000001 00000000 0 1

Table 3.4.1 Successive division by 2

Questions

Show the binary number that results from 3 right shift operations
on the binary number in Figure 3.4.10.

Show the binary number that results from a single right shift
operation on the binary number in Figure 3.4.11. Comment on
the result.

9

10

0 0 0 1 1 0 0 0

Figure 3.4.10

0 0 0 0 0 1 1 1

Figure 3.4.11

Institution licence - St Martins School Essex

3.4 Binary arithmetic

175

In this chapter you have covered:

 ■ Adding together up to three binary numbers

 ■ Applying a binary shift to a binary number

• Left shift

• Right shift

 ■ Describing situations where binary shifts can be used

• Multiplying by 2

• Dividing by 2.

Institution licence - St Martins School Essex

176

 ■ 3.5 Character encoding

ASCII
Long ago, before the Internet and the World Wide Web, the only characters that
mattered were unaccented uppercase and lowercase English letters based on a 26
letter alphabet, digits 0 - 9, and a variety of punctuation and special symbols.

We have learned that computers work with numbers in the form of bit patterns.

Therefore, to store letters of the alphabet and other characters we have to
assign each one a number.

An encoding scheme called ASCII does just this. It was invented to encode the
limited set of characters mentioned above.

In this scheme, characters are encoded using a number between 32 and 127. For
example, in the ASCII character set, space is 32, and the upper case letter 'A' is
65. Device-control characters such as line feed and carriage return were added
to this set of characters and allocated numbers in the range 0 to 31.

In all, the entire character set is
encoded using numbers in the
range 0 to 127.

To represent this number range
in the language of the machine,
binary, requires 7 bits.

Table 3.5.1, shows 96 of the
possible 128 (27) codes.

For example, from Table 3.5.1
the ASCII code for the letter A
is 1000001 in binary and 65 in
decimal whilst the ASCII code for
the minus sign symbol - is 0101101
in binary which is 45 in decimal.

ASCII was invented in the
1960s so that information could
be exchanged over telephone
wires between data processing
equipment.

ASCII stands for American
Standard Code for Information
Interchange.

Learning objectives:
 ■ Understand what a character
set is and be able to describe
the following character
encoding methods:

• 7-bit ASCII
• Unicode

 ■ Understand that character
codes are commonly grouped
and run in sequence within
coding tables

 ■ Describe the purpose of
Unicode and the advantages of
Unicode over ASCII

 ■ Know that Unicode uses the
same codes as ASCII up to
127.

3 Fundamentals of data representation
3 Fundamentals of data representation

Code
in decimal

Character
Code

in decimal
Character

Code
in decimal

Character
Code

in decimal
Character

32 Space 56 8 80 P 104 h
33 ! 57 9 81 Q 105 i
34 “ 58 : 82 R 106 j
35 # 59 ; 83 S 107 k
36 $ 60 < 84 T 108 l
37 % 61 = 85 U 109 m
38 & 62 > 86 V 110 n
39 ‘ 63 ? 87 W 111 o
40 (64 @ 88 X 112 p
41) 65 A 89 Y 113 q
42 * 66 B 90 Z 114 r
43 + 67 C 91 [115 s
44 , 68 D 92 \ 116 t
45 - 69 E 93] 117 u
46 . 70 F 94 ^ 118 v
47 / 71 G 95 _ 119 w
48 0 72 H 96 ` 120 x
49 1 73 I 97 a 121 y
50 2 74 J 98 b 122 z
51 3 75 K 99 c 123 {
52 4 76 L 100 d 124 |
53 5 77 M 101 e 125 }
54 6 78 N 102 f 126 ~
55 7 79 O 103 g 127 DEL

Table 3.5.1 ASCII code lookup table

Institution licence - St Martins School Essex

3 Fundamentals of data representation

177

All 128 codes are called character codes because they encode what is collectively known as characters.

However, only 95 codes are actually used for symbols, the other 33 are control codes, codes 0 to 31 and the code
127 which is reserved for an instruction delete a character code.

Table 3.5.2 shows a lookup table for ASCII control
codes, 0 to 31.

The codes in Table 3.5.2 with a blank character field
are codes used for controlling communication over a
telephone line.

Line feed and carriage return are used to break a long
string of characters into separate lines.

When characters are organised on a line-by-line basis
we call this text, e.g. the text that you are reading on
this page.

Text files therefore consist of one long string of ASCII
character codes with the line breaks marked by a
combination of ASCII code 10 (line feed) and ASCII
code 13 (carriage return).

These control codes reposition a VDU’s cursor at the
beginning of the next line when displaying a text file

on a VDU.

Code
in decimal

Character
Code

in decimal
Character

0 Null 16
1 17
2 18
3 19
4 20
5 21
6 22
7 Bell 23
8 Backspace 24
9 Horizontal tabulation 25

10 Line feed 26
11 Vertical tabulation 27 Escape

12 Form feed 28
13 Carriage return 29
14 30
15 31

Table 3.5.2 ASCII code lookup table for some control codes

Questions

State the ASCII character code for
(a) the letter H (b) the decimal digit 3 (c) the symbol ?

What is the symbol or character corresponding to the following ASCII
character codes
(a) 97 (b) 37 (c) 48?

Encode the message "Hello" in ASCII.

Encode the text
 "Hello
 World!"
in ASCII.

Convert the following string of ASCII character codes to its equivalent
text form

72 101 108 108 111 10 13 87 111 114 108 100 33

1

2

3

4

5

Key concept

ASCII or American Standard
Code for Information
Interchange:
In ASCII, the symbols
corresponding to the letters of
the alphabet (upper case and
lower case), punctuation marks,
special symbols and the decimal
digits 0 to 9 are assigned
different 7-bit binary codes
according to a look up table.

Institution licence - St Martins School Essex

3.5 Character encoding

178

Unicode
Logogram-based languages such as Chinese have characters that number in the tens of thousands. These characters
will never fit a 7-bit encoding scheme.

It is impossible, therefore, to represent a string such as 你好 世界 in any of the ASCII 7-bit encoding schemes.

The answer to this problem is an encoding scheme called Unicode (www.unicode.org).

Unicode covers all of the characters in all of the world’s writing systems, plus accents and other special marks
and symbols, and control codes such as tab and carriage return, and assigns each one a standard number called a
Unicode code point.

Unicode version 8 defines code points for over 120,000 characters in well over 100 languages and scripts but not
Klingon, which was rejected in 2001 by the Unicode Technical Committee.

The Unicode Glossary defines a character as:

• The smallest component of written language that has semantic value,
i.e. meaning

• The basic unit of encoding for Unicode character encoding
• The English name for the ideographic written elements of Chinese

origin.

UTF-32 is the simplest Unicode encoding form.

Each Unicode code point is represented directly by a single 32-bit code unit.
Because of this, UTF-32 has a one-to-one relationship between encoded
character and code unit; it is a fixed-width character encoding form.

Whilst UTF-32 provides the simplest mapping, it uses much more space than is
necessary - 4 bytes for every Unicode code point or character.

Most computer-readable text is in ASCII, which requires only 7 bits which can
be accommodated in 1 byte (8 bits).

In fact, all the characters in widespread use still number fewer than 65,536,
which can be coded in 16 bits or 2 bytes. This gave rise to two other Unicode
encoding forms - UTF-16 and UTF-8 of 16 bits and 8 bits respectively.

Figure 3.5.1 shows the three Unicode encoding forms - UTF-32, UTF-16,
UTF-8. In UTF-8 as many bytes as needed are allocated, e.g. the uppercase letter
A is allocated one byte (8 bits) which is the hexadecimal code 41. This is exactly
the same code that ASCII uses (or its 8-bit ANSI standard).

In fact, Unicode uses the same codes as ASCII up to 127, albeit in 8 bits rather
than 7 bits.

Key term
Unicode:
Unicode is a computing
industry standard for
the consistent encoding,
representation, and handling
of text expressed in most of the
world’s writing systems.
Unicode provides a unique
number for every character:
no matter what the platform;
no matter what the program;
no matter what the language.

Information
Unicode code charts:
http://www.unicode.org/charts/
Knowledge of the detail of
UTF-32, UTF-16 and UTF-8 is
not required for GCSE.

Information
Characters:
Characters are represented by
code points that reside only
in a memory representation
as strings in memory, on disk,
or in data transmission. For
example U+0041 is Latin
capital letter A.

The Unicode Standard
Version 8.0 - Core
Specification:
http://www.unicode.org/
versions/Unicode8.0.0/ch02.pdf

The Unicode Standard deals
with character codes.

A
00000041

菜
000083DC 00010381

Ψ
000003A8

UTF-32

A
41

菜
 E8 8F 9C

Ψ
CE A8

UTF-8

A
0041

菜
83DC

Ψ
03A8

UTF-16
D800 DF81

 F0 90 8E 81
Figure 3.5.1 Unicode encoding forms

Institution licence - St Martins School Essex

http://www.unicode.org
http://www.unicode.org/charts/
http://www.unicode.org/versions/Unicode8.0.0/ch02.pdf
http://www.unicode.org/versions/Unicode8.0.0/ch02.pdf

3 Fundamentals of data representation

179

Character form of a decimal digit
Table 3.5.3 has been constructed by copying the ASCII code points for the decimal
digits 0 to 9 from Table 3.5.1.

Humans work with numerals consisting of decimal digits, e.g. 261, when they do
a calculation or record a number. If a decimal numeral sent from one computer
or computer component to another is used by a human at the receiving end for a
calculation, the decimal digits of the numeral must first be mapped to their ASCII code
equivalents before sending, and mapped back on receipt from ASCII code to decimal
digit form.

For example, if 261 is typed at the keyboard, the sequence of ASCII codes 50, 54, 49
is generated and sent. A visual display unit (VDU) receiving these ASCII codes knows
that it should display 261 on its screen - see Figure 3.5.2.

The ASCII codes 50, 54, 49 are called the character code form of the decimal digits
261 e.g. 50 is the character code form of the decimal digit 2. To convert this character
code form 50 into the number 2 we should subtract 48. The character code form of the
decimal number 2 in 7-bits is 0110010 whereas its pure binary representation is 000

0010 in 7-bits.

Symbolically, the character code form 50, 54, 49 can be written as '2' '6' '1'. The single
apostrophes around each digit are used to differentiate the character form from the
decimal digit form.

Grouping of character codes
Table 3.5.3 reflects how character codes are grouped within the ASCII coding table.
For example, the decimal character digits '0' to '9' are assigned codes that run in a
sequence that matches the sequence of decimal character digits, 48 ↦ '0', 49 ↦ '1',
50 ↦ '2', etc.

This means that the codes for character digits '1' to '9' can be calculated once the code
for character digit '0 'is known.

Code
in decimal Symbol

48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9

Table 3.5.3 ASCII codes
for the decimal digit

symbols 0 to 9

To
ASCII

To
decimal
digits

505449
261

Decimal number
typed at keyboard

261

Decimal number
displayed on VDU

Figure 3.5.2 From decimal numeral to ASCII codes and back to decimal numeral

Code Letter
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z

Table 3.5.4 ASCII codes
for the uppercase letters

Questions

你 is one example of the set of 50000 Chinese characters. What character
coding scheme could you use to represent these 50000 Chinese characters and
why?

State one advantage of Unicode over ASCII.

Why is it possible to use Unicode to represent 7-bit ASCII?

6

7

8

Institution licence - St Martins School Essex

3.5 Character encoding

180

Similarly, Table 3.5.4 reflects how character codes for the uppercase letters are grouped within the ASCII coding
table. For example, the character 'A' has the code 65, the character 'B' the code 66. The codes for uppercase letter
characters run in a sequence that matches the sequence of uppercase character letters, 65 ↦ 'A', 66 ↦ 'B', 67 ↦ 'C',
etc.

This means that the codes for characters digits 'B' to 'Z' can be calculated once the code for character 'A' is known.

In this chapter you have covered:

 ■ What a character set is and the following character encoding methods:

• 7-bit ASCII

• Unicode

 ■ That character codes are commonly grouped and run in sequence within coding tables

 ■ The purpose of Unicode and the advantages of Unicode over ASCII

 ■ That Unicode uses the same codes as ASCII up to 127.

Questions

The ASCII character code for the decimal character digit '0' is 48.
Without using an ASCII code table, calculate what the ASCII character code is for the decimal character
digit '3'.

The ASCII character code for the character 'A' is 65.
Without using an ASCII code table, show how you would calculate the ASCII character code for the
character ‘D’.

Show by calculation how to convert the following ASCII codes to their equivalent decimal digit value
(not their equivalent decimal character digit), given that decimal character digit '0' has ASCII code 48 and
decimal digit value 0.
(a) 51 (b) 53 (c) 57

What is the ASCII character code form of the following decimal digits and combination of decimal digits
(note that 6 is not the same as '6', 34 is not the same as '34', etc)
(a) 6 (b) 34 (c) 908 (d) 444?

Why is it difficult to do arithmetic with the character form of a decimal number?

What would need to be done with the character form of a decimal numeral in order to do arithmetic in the
conventional way?

What is the ASCII character code form of the following characters and character strings
(a) '6' (b) '54'?

9

10

11

12

13

14

Institution licence - St Martins School Essex

181

 ■ 3.6 Representing images

What is a pixel?
Light reflected by an object may be captured by a digital camera as shown in
Figure 3.6.1. The digitised image is made up of pixels.
A pixel is the smallest addressable region (“point”) or element of a digital
image. The term pixel is short for picture element.

Each pixel is a sample of the original image. A pixel is a single dot of colour.

Each “square” in the pixel grid of rows and columns shown in Figure 3.6.2 is
known as a pixel or picture element.
The pixel at the row position 12 and column position 17 in Figure 3.6.2 is a
mix of red, green and blue.

 ■ the red component has an 8-bit value representing its intensity of
 A816 or 16810 (measured on a scale that ranges from 0 to 255)

 ■ the green component (8-bits) has an intensity of 2316 or 3510

 ■ the blue component (8-bits) has an intensity of 1616 or 2210

At position Row = 14 and Column = 3, the corresponding red, green and blue
intensities are each represented by FF16 or 25510, the maximum value.

Learning objectives:

 ■ Understand what a pixel is
and be able to describe how
pixels relate to an image and
the way images are displayed

 ■ Describe the following for
bitmaps:

• size in pixels

• colour depth

 ■ Know that the size of a bitmap
image is measured in pixels
(width x height)

 ■ Describe how a bitmap
represents an image using
pixels and colour depth

 ■ Describe using examples how
the number of pixels and
colour depth can effect the file
size of a bitmap image

 ■ Calculate bitmap image file
sizes based on the number of
pixels and colour depth

 ■ Convert binary data into a
bitmap image

 ■ Convert a bitmap image into
binary data.

3 Fundamentals of data representation
3 Fundamentals of data representation

Light source

Imaging system

(Internal) image

Real world object

Output (digitised image)

Figure 3.6.1 Digital camera imaging system

Key concept

Pixel:
A pixel is the smallest
addressable region or element of
a digital image or dot of colour.
Each pixel is a sample of the
original image.

Pixel
or Picture element
at position Column = 3, Row = 14
Colour = FFFFFF16

Pixel
at
Column = 17, Row = 12
Colour = A8231616

Column

Row

0

19

0 173

12

14

27

Figure 3.6.2 Pixel grid made up of 28 x 20 = 560 pixels

Institution licence - St Martins School Essex

3 Fundamentals of data representation

182

Displaying an image
Visual Display Units (VDUs) display pictures (images) by dividing the display screen into thousands (or millions)
of pixels, arranged into rows and columns as shown in Figure 3.6.4.

Image size of a bitmap
The pixel grid shown in Figure 3.6.2 is made up of 28 x 20 = 560 pixels.

The colour of each pixel is recorded in 24 bits, 8 bits per primary colour (the
primary colours are red, green and blue).

The total collection of bits for the entire 560 pixels making up the digitised image
is called a bitmap and the digitised image, a bitmap image. To store a digitised
image we store its bitmap.

The size of a bitmap image is expressed directly as width of image in pixels by height of image in pixels using the
notation width x height, e.g. 28 x 20. A bitmap image’s resolution can be expressed in terms of its image size in
pixels, i.e. image resolution = width in pixels x height in pixels.

Figure 3.6.4 Visual Display Unit of 1080 x 1920 pixels

11.25”
20”

1920 pixels

1080 pixels

Small magnified
area of screen

Pixel

Key concept

Bitmap size in pixels:
Bitmap size = W x H
where
W = width of image in pixels
H = width of image in pixels

Questions

Figure 3.6.3 shows an image captured and saved with three different settings of a digital camera.
Give one reason why the quality of the three images appears to improve from image (a) to image (c).

1

Figure 3.6.3
(a) (b) (c)

Questions
The dimensions of a VDU screen in pixels are shown opposite.
How many pixels in total does the screen of this VDU have
available to display images?

2

1024 pixels

768 pixels

Institution licence - St Martins School Essex

3.6 Representing images

183

Colour depth of a bitmap
Colour depth, also known as bit depth, is expressed as the number of bits used
to indicate the colour of a single pixel in a digitised image, e.g. 24 bits.

The bitmap of an image records for each pixel a whole number (integer)
encoded in the given bit depth.

Visual Display Units use each integer in the bitmap when displaying the image to
select the corresponding colour to display for each pixel.

Suppose the colour depth of each pixel is recorded using 8 bits per pixel, then the
possible whole numbers (integers) that can be represented lie in the range 0 to 255 in decimal.

If instead 16 bits are used per pixel then the range is greater and from 0 to 65535.
More bits means more colours can be represented, a different colour can be chosen for each
integer in this range.
If the colour depth of each pixel is recorded using 2 bits per pixel, then the possible whole
numbers (integers) that can be represented lie in the range 0 to 3 in decimal.

Fewer bits means fewer colours can be represented.

Given a colour depth of 24 bits allocated as follows:

 ■ 8 bits to represent red intensity

 ■ 8 bits to green and

 ■ 8 bits to blue,

The integer values for each primary colour can range from 0 to 255 in decimal.

Ignoring the 8 bits for green and the 8 bits for blue and focussing just on the 8 bits allocated to red, Figure 3.6.5
shows some selected values from the possible range 0 to 255 for red intensity and their corresponding “redness”.
Note that when the value is 0 the redness manifests itself as black, an absence of colour.
Each possible combination of the coded red, green and blue intensities represents a different resultant colour.
The number of different bit patterns of 24 bits is 224 = 16777216.
Thus a colour depth of 24 bits allows for 16777216 different colours.

Questions

State the maximum number of different colours that can be encoded when using two bits for each pixel.

What is meant by colour depth?

State the minimum number of bits need to encode 256 different colours.

3

4

5

Key concept

Colour depth or bit depth:
Colour depth, also known as
bit depth, is expressed as the
number of bits used to indicate
the colour of a single pixel in a
digitised image, e.g. 24 bits.

255

192

128

64

0

Figure 3.6.5

Institution licence - St Martins School Essex

3 Fundamentals of data representation

184

How does a bitmap represent an image?
If we wish to store a digitised image, such as the
one shown in Figure 3.6.2, then information
about the colour of each element of the image, i.e.
each pixel, must be stored.
This is done by recording for each pixel, the
number (from the range allowed by the chosen
colour depth) representing its digitised intensity.
Figure 3.6.6 shows a section of memory from
locations 308 to 335 and the corresponding row of
pixels that it maps to in Figure 3.6.2.

Note that the white pixels in this row are stored
as FFFFFF and the non-white pixels as either
A82316, CA1719, or F29476.
We say that the image is mapped to bits in
memory.
The stored bits in memory are a digital
representation of this image, a bitmap.
Any bitmap image is a pixel-based digital image.

Bitmap image file sizes
The digitised image shown in Figure 3.6.2 consists
of 28 x 20 = 560 pixels.
The colour information for each pixel requires 24 bits of storage space because
the colour depth is 24 bits.
Therefore, the size in bits of this digitised image is as follows

Size in bits = Width x Height x Colour depth

Size in bits = 28 x 20 x 24
= 13440

The size in bytes of this digitised image is as follows
Size in bytes = (Width x Height x Colour depth)/8

= 13440/8
= 1680

For this image, a minimum file size of 1680 bytes will be required to store the image’s bitmap.
If colour depth was changed to 8 bits then the minimum file size will be (28 x 20 x 8)/8 = 560 bytes.
Example
Width = 1920 pixels
Height = 1080 pixels
Colour depth = 24 bits

Size in bits = Width x Height x Colour depth
Size in bits = 1920 x 1080 x 24

= 49766400
The size in bytes of this digitised image is as follows

Size in bytes = (Width x Height x Colour depth)/8
= 49766400/8
= 6220800

Size in megabytes = 6220800/1000000
= 6.2208 MB

For this image, a minimum file size of 6.2208 MB will be required to store the image’s bitmap.

Key concept

Bitmap image or bitmap:
A bitmap image is a pixel-based
digital image.
The digitised image is mapped
to bits in memory representing
the intensity and colour of each
pixel.

A82316
A82316

F29476
CA1719

A82316
A82316
FFFFFF
FFFFFF

FFFFFF
FFFFFF

FFFFFF

FFFFFF

FFFFFF
FFFFFF

FFFFFF

FFFFFF
A82316

FFFFFF

FFFFFF

FFFFFF

FFFFFF

FFFFFF
FFFFFF

FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF

314
313
312
311
310
309
308

321
320
319
318
317
316
315

328
327
326
325
324
323
322

335
334
333
332
331
330
329

MEMORY

DIGITISED
SAMPLES

MAPPED TO

Figure 3.6.6 shows a section
of memory from locations 308
to 335 and the corresponding
row of pixels that they map to.

Key point

Bitmap image file sizes:
Size (in bits) = W x H x D
Size (in bytes) = (W x H x D)/8
where
W = width of image in pixels
H = height of image in pixels
D = colour depth in bits

Institution licence - St Martins School Essex

3.6 Representing images

185

Converting a digitised black and white image1 into binary data
The image shown in Figure 3.6.8 is made up of a 5 by 5 pattern of black and white squares.

Digitising this image onto a 5 x 5 grid of pixels results in the grid shown in Figure 3.6.9.

If we use a colour depth of 1 bit and encode black with the bit value 0 and white with the bit value 1 then the
binary encoding of each row of the digitised image shown in Figure 3.6.9 is as shown in Figure 3.6.10.

It would be wasteful but perfectly possible to use a colour depth of 2 bits and encode black with the bit value 00

and white with the bit value 11.

The binary encoding of each row would then be as shown
in Figure 3.6.11.

With a colour depth of 1 bit the bitmap for the digitised
image shown in Figure 3.6.10 is

With a colour depth of 2 bits the bitmap for the digitised image shown in Figure 3.6.11 is

The displayed image appears the same (Figure 3.6.9) but its bitmap requires more storage
space. However, the unused bit patterns 01 and 10 could be used for two different shades
of grey.

1 AQA’s 8525 specification refers to this task as converting a bitmap image into binary data

Questions

The 640 x 480 digitised image shown in Figure 3.6.7 uses a
colour depth of 24 bits.
How would the size of its bitmap be affected if colour depth was
changed to 8 bits?

Calculate the size in bytes of the bitmap for the 640 x 480
digitised image of colour depth 24 bits shown in Figure 3.6.7.

6

Figure 3.6.7

Figure 3.6.8 Figure 3.6.9

01110
10101
11011
10101
10001

Figure 3.6.10

0011111100
1100110011
1111001111
1100110011
1100000011

Figure 3.6.11

01110
10101
11011
10101
10001

0011111100
1100110011
1111001111
1100110011
1100000011

7

Institution licence - St Martins School Essex

3 Fundamentals of data representation

186

Converting binary data into a bitmap image
Using a colour depth of 1 bit to encode black with the bit value 0 and white with the bit value 1,
the following binary encoding of each row of a digitised image was produced as shown in Figure
3.6.14.

From the bitmap of 0s and 1s shown in Figure 3.6.14 it is
possible to deduce that the digitised image has
4 columns and 5 rows of pixels.

Figure 3.6.15 shows a reconstruction of the 5 x 4 grid.

To recreate the digitised image we read the bitmap data row by
row, from left to right, starting with the first row.

When a 0 is encountered the corresponding pixel is made
black and when a 1 is encountered the corresponding pixel is
made white as shown in Figure 3.6.16.

In this chapter you have covered:
 ■ What a pixel is and describing how pixels relate to an image and the way images are displayed
 ■ The following for bitmaps:

• size in pixels
• colour depth

 ■ Know that the size of a bitmap image is measured in pixels (width x height)
 ■ How a bitmap represents an image using pixels and colour depth
 ■ Describing using examples how the number of pixels and colour depth can affect the file size of a bitmap image
 ■ Calculating bitmap image file sizes based on the number of pixels and colour depth
 ■ Converting binary data into a bitmap image
 ■ Converting a bitmap image into binary data.

Questions

The grid shown in Figure 3.6.12 represents a bitmap
image of colour depth 1 bit.
The corresponding bitmap uses bit value 0 to encode
a black pixel and bit value 1 to encode a white pixel.
Copy Figure 3.6.13 and write the bit patterns
corresponding to each row of pixels shown in Figure
3.6.12.

8

Figure 3.6.12

Row 1
Row 2
Row 3
Row 4

Figure 3.6.13

Figure 3.6.15

Figure 3.6.16

0101
1010
0101
1010
0101

Figure 3.6.14

Reading direction

Questions
Figure 3.6.17 shows three digitised black and white
images. The corresponding bitmaps use bit value 0
to encode a black pixel and bit value 1 to encode a
white pixel.
Only one bitmap is correctly encoded.
State which bitmap is correctly encoded.

9 0011A

B

C

Image Encoding

0110

1100
1001

1001
1010

Figure 3.6.17

Institution licence - St Martins School Essex

187

 ■ 3.7 Representing sound

Sound is analogue
When the forks of a tuning fork vibrate naturally, the oscillations
caused in the surrounding air are perceived as a pure sound tone
by the brain “hearing them”.

The ear of the listener converts the tuning-fork-induced air
pressure fluctuations into an equivalent oscillating electrical signal that then
travels to the brain for processing.

We can see the shape of these
oscillations by converting
the smooth and continuous
fluctuations in air pressure
into an equivalent oscillating
electrical voltage by using a
microphone and displaying
this voltage as a function
of time on the screen of an
oscilloscope, a sophisticated
kind of voltmeter, as shown
in Figure 3.7.1.

The fluctuations in air pressure that we experience as
sound vary in a continuous manner.
For the vibrating tuning fork, we get a smooth and
continuous variation in air pressure as shown in Figure
3.7.2, which travels as a sound wave to the microphone.
The voltage (and current) the microphone generates in
response also varies in a smooth and continuous manner
and is similar in shape to the sound vibrations picked up
by the microphone.
By shape is meant waveform - see Figure 3.7.3.

Sound is analogue in form because it (the air pressure
fluctuations) varies in a continuous manner.
The voltage (or current) generated by the microphone
is an electrical signal.
This electrical signal (voltage or current) is also
analogue because it too varies in a continuous manner
and its variation is similar in shape to that of the sound.

Learning objectives:

 ■ Understand that sound is
analogue and that it must be
converted to a digital form
for storage and processing in a
computer

 ■ Understand that analogue
signals are sampled to create
the digital version of sound

 ■ Describe the digital
representation of sound in
terms of:

• sampling rate

• sample resolution

 ■ Calculate sound file sizes based
on the sampling rate and the
sample resolution.

3 Fundamentals of data representation
3 Fundamentals of data representation

Figure 3.7.1 Oscilloscope displaying the
oscillations of a tuning fork via a microphone

0.5 0.7 0.9 1.00.40.30.20.1 1.1 1.20.80.6

Pr
es

su
re

/P
a

Time/milliseconds
0

Figure 3.7.2 Fluctuations in air pressure caused
by a vibrating tuning fork as a function of time

0.5 0.7 0.9 1.00.40.30.20.1 1.1 1.20.80.6

Vo
lta

ge
/v

ol
ts

Time/milliseconds
0

Figure 3.7.3 Fluctuations in voltage induced
in a microphone by a vibrating tuning fork as a

function of time

Institution licence - St Martins School Essex

3 Fundamentals of data representation

188

Recording sound in digital form
The language of digital computers is binary. Therefore, if we want to record sound in a digital computer we must
represent the sound as a sequence of bit patterns, i.e. a sequence of numbers.
To get these numbers, we must first sample the analogue waveform of the sound, or more correctly its electrical
equivalent - an analogue signal.
We must do this at regular points in time and when we sample, we must also measure the height (amplitude) of the
analogue waveform as shown in Figure 3.7.4.

A conversion table such as shown in Table 3.7.1 is then used to decide which
binary number (bit pattern) to use for the measured height.
Table 3.7.1 assumes that the binary numbers are restricted to using 4 bits.
If greater measurement precision is required then more bits must be used, e.g. if
voltage measurement ranges for samples of, say, -0.25 to + 0.25 volts, +0.25 to +
0.5 volts, etc, are required then more than 4 bits must be used.
If less precision is acceptable then fewer bits can be used as shown in Figure 3.7.6.
Figure 3.7.5 shows an enlargement of a measurement ruler that corresponds to Table 3.7.1. The voltage interval
between consecutive binary numbers is 1 volt.
Figure 3.7.6 shows an enlargement of a measurement ruler that uses three bits for sample height measurement and
therefore less precision - difference between consecutive binary numbers is now 2.25 volts.

Sampling clock

Positions marked | on clockface
when waveform sampled

Time

Sample point

A
A

D

E

F
G

H

G

C

E
B

B

C

D

F H

Figure 3.7.4 Measuring the height of the
waveform at regular points in time

Measured
sample in volts
lies between

Binary

Number

-0.5 to +0.5 0000

+0.5 to +1.5 0001

+1.5 to +2.5 0010

+2.5 to +3.5 0011

+3.5 to +4.5 0100

Table 3.7.1 Part of conversion
table used when measuring a

sample and assigning a binary
number

-1.0 0.0 +1.0
+1.5 +2.5 +3.5 +4.5 +5.5 +6.5+0.5-0.5

+2.0 +3.0

0011001000010000

+4.0 +5.0 +6.0 +7.0

0111011001010100

Figure 3.7.5 Enlargement of a measurement ruler that encodes sampled waveform height using 4 bits

-1.0 0.0 +1.0
+1.5 +2.5 +3.5 +4.5 +5.5 +6.5 +7.5+0.5-0.5

+2.0 +3.0

001

+4.0 +5.0 +6.0 +7.0

000 011010
Figure 3.7.6 Enlargement of a measurement ruler that encodes sampled waveform height using 3 bits

Key term
Sample:
A sample is a measure of
amplitude at a point in time.

Institution licence - St Martins School Essex

3.7 Representing sound

189

Sampling rate
The sampling rate is the number of samples taken in a second and is usually
measured in Hertz (1 Hertz = 1 sample per second).
For example, the sampling rate used in audio recordings on a Compact Disc
(CD) is 44.1 kHz, i.e. 44100 samples per second (1 kHz = 1000 Hz).
This is approximately twice the maximum analogue frequency of 20 kHz of any
audio signal.
A raw, uncompressed, sampling of sound lasting 60 seconds will consist of

60 x 44100 samples or 2646000 samples.
Digital telephone lines are sampled at a rate of 8 kHz or 8000 samples per
second, and assume that the maximum analogue frequency present in speech
carried by a digital telephone line is 4 kHz.
Therefore, one minute of sampled speech sent along a digital telephone line will
consist of

60 x 8000 samples or 480000 samples.

Information

Sound:
In physics, sound is a
vibration that travels as a
mechanical wave of pressure
(and displacement), through a
medium such as air or water.
In physiology and psychology,
sound is the reception of such
waves and their perception by
the brain.
Humans can hear sound waves
with frequencies between about
20 Hz and 20 kHz. Sound
above 20 kHz is ultrasound.

Information

Audio:
Audio is sound within the range
of frequencies that humans
can hear. The limits of human
hearing fall within the range, 20
to 20000 Hz.

Audio signal:
An audio signal is a
representation of sound,
typically as an electrical voltage.

Questions
What is meant by saying that sound is analogue in form?

Table 3.7.2 shows five stages in converting sound into
a digital form.
State the correct order for the five stages using the
given labels A - E.

1

2

Questions
Digital Audio Tapes (DAT) used a sample rate of 48 kHz to record
sampled audio on magnetic tape.
How many samples are taken per second?

Figure 3.7.7 shows
sampling of an
analogue electrical
signal from a
microphone.
Samples are taken at
time = 0 and every
millisecond from
thereon.
(a) What is the sampling frequency in Hertz?
(b) What is the measured voltage at time = 1 millisecond?
(c) Convert this voltage to binary using Table 3.7.1.

3

4

Time/milliseconds

Red lines
indicate
when
amplitude
is sampled

Vo
lta

ge
/v

ol
ts

0

1

-1

-2

-3

2

3

4

1 2 3 4 5 6

7 8 9 10

111213 1415

Figure 3.7.7

Label Stage

A Amplitude of waveform measured at a
specific point in time

B Converted to an electrical analogue
signal

C Binary representation stored
D Microphone picks up sound waves

E
Amplitude measurement assigned a
binary number

Table 3.7.2

Institution licence - St Martins School Essex

3 Fundamentals of data representation

190

Sample resolution
Sample resolution is the number of bits allocated to each sample (number of bits per sample).
Each sample sent along a digital telephone line is encoded in 8 bits.
Therefore, a minute of sampled speech will consist of the following number of bits

60 x 8000 x 8 = 3840000 bits
= 480000 bytes

= 480 kB

The audio recorded on CD is of higher quality than speech audio sent along a telephone line. This higher quality is
achieved by allocating more bits per sample, 16 bits, in fact. We say that the sample resolution of audio CDs is 16
bits.
Therefore, a minute of uncompressed sampled sound will consist of the following number of bits

60 x 44100 x 16 = 42336000 bits

= 5292000 bytes

= 5292 kB

= 5.292 MB

Calculating sound file sizes
Uncompressed sampled sound may be stored in a file with a format such as Wave or AIFF.

Wave files have the extension WAV (.wav). The Wave file format was created by Microsoft.

Audio Interchange File Format (AIFF) is an audio file format standard developed by Apple Inc and used for storing
sound. The file extension for the standard AIFF format is .aiff or .aif.

To calculate the file size of a Wave or AIFF file (ignoring any metadata) we may use

file size (bits) = sampling rate x sample resolution x number of seconds of recorded sound

For a WAV audio file,

Sampling rate = 44.1 kHz

Sample resolution = 16 bits

Therefore, the file size of a WAV file that stores 5 minutes of sampled sound is calculated as follows

File size (bits) = 44100 x 16 x 5 x 60

= 211680000

File size (bytes) = (44100 x 16 x 5 x 60)/8

= 26460000

File size (megabytes) = (44100 x 16 x 5 x 60)/(8 x 1000000)

= 26.46

Questions

The sample resolution of a DVD-Audio is 24 bits.
What does this mean?

5

Key term
Sample resolution:
Sample resolution is the number
of bits allocated to each sample
(number of bits per sample).
Sampling rate:
Sampling rate is the number of
samples taken in a second and is
usually measured in Hertz
(1 Hertz = 1 sample per
second).

Institution licence - St Martins School Essex

3.7 Representing sound

191

In this chapter you have covered:

 ■ That sound is analogue and that it must be converted to a digital form for storage and processing in a computer

 ■ That analogue signals are sampled to create the digital version of sound

 ■ Describing the digital representation of sound in terms of:

• sampling rate

• sample resolution

 ■ Calculating sound file sizes based on the sampling rate and the sample resolution.

Questions

Calculate the file size in bits for a three minute sound recording that has used a sample rate of 1000 Hertz
(Hz) and a sample resolution of 6 bits.

The sample resolution of a DVD-Audio is 24 bits. The sampling rate is 48 kHz.
10 minutes of sound recorded in uncompressed sampled form is stored in a file on a DVD-Audio disc.
(a) What is the size in bits of this file?
(b) What is the size in bytes of this file?
(c) What is the size in kilobytes of this file?

6

7

Institution licence - St Martins School Essex

192

 ■ 3.8 Data compression

What is data compression and why compress?
Essentially, data compression squeezes data into a
smaller number of bytes than the data would occupy if
not compressed.

There are two main reasons why data are compressed:

• To reduce the amount of storage space required
to store the data

• To reduce the time taken to transmit the data
because fewer bytes need to be transmitted.

For example, text may be compressed by replacing each common character/
letter combination with a single byte-coded integer number as in Table 3.8.1.

Uncompressed text = "THE BLACK CAT SAT ON A MAT."

Compressed text = "1E 2A3 C4 S4 5 A M4."

If each character in the uncompressed text is coded in one byte (including
spaces and full stop) then this text requires 27 bytes of storage.
For the compressed text the storage requirement is just 20 bytes, a saving of
seven bytes. This represents a 26% saving, approximately.

This example is just one way that data may be compressed.
There are other ways depending on the type of data (text, images, audio, etc).
Each method of data compression works best with a particular data type.
Although we used the term “squeeze”, compressing data is not actually done
by squeezing data, but by removing any redundancy (unnecessary data
duplication).
Data with redundancy can be compressed by removing some or all of the
redundancy.
Data without any redundancy cannot be compressed without loss of
information.

Learning objectives:
 ■ Explain what data
compression is

 ■ Understand why data may be
compressed and that there are
different ways to compress data

 ■ Explain how data can be
compressed using Huffman
coding

 ■ Be able to interpret/create
Huffman trees

 ■ Be able to calculate the
number of bits required to
store a piece of data compressed
using Huffman coding

 ■ Be able to calculate the
number of bits required to
store a piece of uncompressed
data in ASCII

 ■ Explain how data can be
compressed using run length
encoding (RLE)

 ■ Represent data in RLE
frequency/data pairs.

3 Fundamentals of data representation
3 Fundamentals of data representation

Integer Code
Character

Combination
1 ‘TH’
2 ‘BL’
3 ‘CK’
4 ‘AT’
5 ‘ON’

Table 3.8.1 Codes for common character combinationsKey principle
Compression:
Data can be compressed because
its original representation is
not the shortest possible. The
original data has redundancies
(redundancy = not needed) and
compressing the data reduces or
eliminates these redundancies,
e.g. "AT" is replicated three
times in the text “THE BLACK
CAT SAT ON A MAT.”.
Non-random data is non-
random because it has structure
in the form of regular patterns.
It is this structure that is the
cause of redundancy in the
data. Random data has no
structure and therefore has no
redundancy. Therefore, random
data cannot be compressed.

Institution licence - St Martins School Essex

3 Fundamentals of data representation

193

Huffman coding
Fixed-size coding versus variable-size coding

Before a computer can store and process data, the data must be expressed in the
language of the computer, i.e. binary (0s and 1s).

Figure 3.8.1 shows an upside down tree which can be used to encode data in
numeral form chosen from the range 0 to 7.

For example, the numeral 3, is encoded as 011 as shown in Figure 3.8.3 by
following the instructions

• Start at root

• Take route along branches to
numeral

• Note each red numeral in the order
encountered, 011.

Table 3.8.2 shows the codes for the
numerals 0 to 7.

This is a fixed-size coding scheme with
each numeral encoded using a binary
digit string of length 3.

Using a fixed-size code is a natural choice
because it makes it easy for software
applications to handle.

For example, we could use this encoding scheme to encode strings such as

22220000011116634557711112222000

However, this is not normally the best option for encoding strings in which
some numerals occur more often than others.

In such cases, it is normally better to use a variable-size coding scheme.

Suppose the numerals 0, 1, 2 occur with the same frequency but more
frequently than the numerals 3, 4, 5, 6, 7 and numerals 5, 6 and 7 occur with
the same frequency but more frequently than 3 and 4 which occur with the
same frequency as each other.

To take into account the difference and similarity in frequency of occurrence, a
shorter code can be allocated to 0, 1 and 2 as shown in Table 3.8.3 and longer
codes for 3, 4, 5, 6 and 7 according to their comparative frequency.

0

0
Root

Leaves

0 0

0 0 0 0

1

1

1 1

1

1 11

2 3 4 5 6 7

Figure 3.8.1 Coding tree

Figure 3.8.2 Upside down
tree with root at top, and
leaves at the bottom

0

0
Root

Leaves

0 0

0 0 0 0

1

1

1 1

1

1 11

2 3 4 5 6 7

Figure 3.8.3 Coding tree

Numeral Code
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Table 3.8.2 Codes for the
numerals 0 to 7

Numeral Code
0 00
1 01
2 10
3 11000
4 11001
5 1101
6 1110
7 1111

Table 3.8.3 Codes for the
numerals 0 to 7

Questions
What does it mean to compress data?

Give two reasons why data are compressed.

Why is it possible to compress data that has structure without losing information?

Give two reasons why it is desirable to compress data.

1

2

3

4

Institution licence - St Martins School Essex

3.8 Data compression

194

Figure 3.8.4 shows the coding tree for this variable-size coding scheme.

Table 3.8.4 shows that fewer bits are required to encode the given numeral strings when the coding tree for
variable-size codes is used instead of the coding tree for fixed-size codes.

Compressing text

A common form of data is text.

In meaningful English text, some letters such as “e”, “a”, and “t” occur often, whilst some letters such as “q” and “z”
occur less often. This suggests that text could be compressed by using variable-size coding.

One binary coding scheme commonly used by computers is ASCII, a fixed-size code of 7 bits. Unicode is another.

Text encoded in ASCII is likely to contain redundancy because it assigns to each character, common or rare, the
same number of bits.

The solution is to remove this redundancy by assigning variable-size binary codes to the characters.

Common characters are assigned short binary codes and less common characters, long binary codes.

This is precisely how Huffman coding works.

We have seen Huffman coding in action already in the coding scheme shown in Figure 3.8.4.

To understand how short codes and long codes can be assigned to text consider the following simple example.

The words referee, freeze, reefer suggest a possible Huffman coding tree as
shown in Figure 3.8.5. Figure 3.8.6 shows a tree built for fixed-size coding.

Table 3.8.5 shows that Huffman coding produces fewer bits than fixed-size
coding when coding these words. Later you will see that this saving in bits
can be considerable when the fixed-size coding uses ASCII coding.

Numeral string
Coding
scheme

Binary-coded strings

2222000001111663
4557711112222000

Variable-size
coding

1010101000000000000101010111
101110110001100111011101111111
110101010110101010000000

2222000001111663
4557711112222000

Fixed-size
coding

0100100100100000000000000000
01001001001110110011100101101
11111100100100100101001001001
0000000000

Table 3.8.4 Comparison of fixed-size and variable-size coding

Word Coding scheme Binary-code
referee Huffman coding 10 0 110 0 10 0 0
referee Fixed-size coding 01 00 10 00 01 00 00
freeze Huffman coding 110 10 0 0 111 0
freeze Fixed-size coding 10 01 00 00 11 00
reefer Huffman coding 10 0 0 110 0 10
reefer Fixed-size coding 01 00 00 10 00 01

Table 3.8.5 Comparison of fixed-size and Huffman coding

0

0
Root

0 0

01

1

0 10 1

1

1

12

0 1

3 4
5 6 7

Figure 3.8.4 Coding tree for
scheme that uses variable-size
codes

e

0

0 0

1

1 1

r f z
Figure 3.8.6 Fixed-size coding tree

e

0

0

0

1

1

1r

f z

Figure 3.8.5 Huffman coding tree

Institution licence - St Martins School Essex

3 Fundamentals of data representation

195

Table 3.8.6 shows a Huffman code based on statistical analysis of English language texts for the 26 letters of the
alphabet.

The length of the code depends upon how often the letter appears in English text. The shortest code (3 bits) is
assigned to the letter "e", the most common letter, and the longest code (7 bits) is assigned to the least common,
letters "q" and "z".

Worked example of a Huffman tree constructed from specific text

Context
Figure 3.8.7 shows a Huffman tree for the text TESS SAW A RAT UP A
TREE.
Each character of this text has been placed at a position in the tree determined
by how often the character is used in the text.
Using this Huffman tree, the Huffman coding for the character E would be
the bit pattern 010 because from the top of the tree E is to the left, then right and then left.
The character S is represented by the bit pattern 110 because from the top of the tree S is to the right, then right
again and then left.

Questions
By definition, random data is data in which each datum occurs just as often as any other datum.
Can random data be compressed?

Using the Huffman coding tree shown in Figure 3.8.5, encode the following words
(a) reef (b) freer (c) refreeze
Using the Huffman coding tree shown in Figure 3.8.5, decode the binary code 110100010.

5

6

7

Letter Huffman Code Letter Huffman Code Letter Huffman code
a 0011 j 111100 s 10001
b 11010 k 111101 t 0010
c 10100 l 10011 u 10101
d 10010 m 10110 v 11101
e 000 n 0101 w 11011
f 10111 o 0100 x 111110
g 11100 p 11000 y 11001
h 10000 q 1111110 z 1111111
i 0111 r 0110

Table 3.8.6 A Huffman code for the 26 letters of the alphabet

Questions
(a) Using 7-bit ASCII, calculate the number of bits required to encode the vowel string "aeiou".
(b) Using the Huffman code in Table 3.8.6, calculate the number of bits required to encode the vowel

string “aeiou”.
(c) Calculate the difference in number of bits between the two coding methods.

8

A

R P U W

E
SPACE

S T

Figure 3.8.7 Huffman tree

Institution licence - St Martins School Essex

3.8 Data compression

196

Question

Using Huffman code defined by the tree in Figure 3.8.7, complete Table 3.8.7 to
show the Huffman coding for the characters A, SPACE and U.

Solution

Starting from the top of the tree, the character A is reached by going left, then left
again and left again. A is therefore represented by 000.

Starting from the top of the tree, the SPACE character is reached by going right, then left.

SPACE is therefore represented by 10.

Starting from the top of the tree, the character U is reached by going left, then right,
then right again and finally left. U is therefore represented by 0110.

Question

Using Huffman coding, the text TESS SAW A RAT UP A TREE can be stored in
71 bits.

Calculate how many additional bits are needed to store the same text using ASCII. Show your working.

Solution

Each character is coded in 7 bits using 7-bit ASCII.

There are 24 characters in the text including the SPACE character.

Therefore, using ASCII, the total number of bits = 24 x 7 = 168 bits

An additional 97 bits are therefore required.

Word
Huffman
coding

A
SPACE

U

Table 3.8.7 Huffman coding

Word
Huffman
coding

A 000
SPACE 10

U 0110

Table 3.8.8 Huffman coding
solution

Questions
Figure 3.8.8 shows a Huffman tree for the text MY PET BEE HAS NAME MANNY.
Each character of this text has been placed at a position in the
tree determined by how often the character is used in the text.
Using this Huffman tree, the Huffman coding for the
character E would be the bit pattern 010 because from the top
of the tree E is to the left, then right and then left.
The character M is represented by the bit pattern 110 because
from the top of the tree M is to the right, then right again and
then left.
(a) Using Huffman code defined by the tree in Figure 3.8.8, complete the
table to show the Huffman coding for the characters N, SPACE and P.

(b) Using Huffman coding, the text MY PET BEE HAS NAME MANNY
can be stored in 81 bits.
Calculate how many additional bits are needed to store the same text using ASCII. Show your working.

9

Word
Huffman
coding

N
SPACE

P

A

S
B H P T

Y

E
SPACE

M N

Figure 3.8.8

Institution licence - St Martins School Essex

3 Fundamentals of data representation

197

Constructing a Huffman tree (this section is not in 8525 specification but has been included for interest)

For the word refreeze the letters occur with the frequencies shown in Table 3.8.9.
Table 3.8.10 shows these frequencies expressed as a fraction of the total number (4

+ 2 + 1 + 1 = 8). We call this the probability of a particular letter appearing in the
set of words, e.g. the letter 'e' has probability 0.5.

To create a Huffman coding tree for the letters with the probabilities shown in
Table 3.8.10, we arrange the letters in descending order of probability as shown in
Figure 3.8.9.
We then start from the left with the two letters with the lowest probabilities.
We link these as shown into a new node 'fz' and from now on, we ignore nodes 'f '
and 'z'.
We also note that the probability of finding 'f' or 'z' is 0.125 + 0.125 = 0.25.
We now combine the nodes with the two
lowest probabilities, i.e. 'r' and 'fz' into a
new node ‘rfz'.
We note that the probability of finding 'r'
or ‘f ’ or 'z' is 0.25 + 0.25 = 0.5.
From now on, we ignore nodes 'r' and 'fz'.

We now combine the nodes with the two
lowest probabilities, i.e. 'rfz' and 'e' into a
new node 'erfz'.
We note that the probability of finding 'e'
or 'r' or 'f ' or 'z' is 0.5 + 0.5 = 1.
Now, we assign 0 to each upper branch
and 1 to each lower branch as shown
in Figure 3.8.9. We could equally have
chosen to do the opposite and assigned 1 to the upper branch and 0 to
the lower. It is quite arbitrary which labelling is used. Figure 3.8.9 now
translates into the Huffman coding tree shown in Figure 3.8.10.

We could have set up Figure 3.8.9 with 'f' and 'z' swapped around since
both have letter probability 0.125. This would mean that 'f ' and 'z' would
have to swap positions in the Huffman tree in Figure 3.8.10.
However, this would make no difference to the average size of the code
which is given by the following calculation:

e 0.5

Probability of �nding letter
in text shown in black

0

0

0

1

1

1

0.5

1
0.25

0.25

0.125

0.125

r

f
fz

rfz

erfz

z
Figure 3.8.9 Construction of Huffman tree from letter probablities

Letter Frequency
e 4
r 2
f 1
z 1

Table 3.8.9 Letter frequencies

Letter Frequency
e 4/8 = 0.5
r 2/8 = 0.25
f 1/8 = 0.125
z 1/8 = 0.125

Table 3.8.10 Letter frequencies

e

0

0

0

1

1

1r

f z

Figure 3.8.10 Huffman coding tree

 Letter 'e' occurs with probability 0.5 and requires 1 bit to encode, so contributes 0.5 x 1.
Letter 'r' occurs with probability 0.25 and requires 2 bits to encode, so contributes 0.25 x 2.

Letter 'f ' occurs with probability 0.125 and requires 3 bits to encode, so contributes 0.125 x 3.

Letter 'z' occurs with probability 0.125 and requires 3 bits to encode, so contributes 0.125 x 3.

Therefore, average size of code = 0.5 x 1 + 0.25 x 2 + 0.125 x 3 + 0.125 x 3 = 1.75 bits/letter.

With four letters, the minimum uncompressed code would require 2 bits/letter.

Institution licence - St Martins School Essex

3.8 Data compression

198

Run length encoding (RLE)
In run length encoding a run of contiguous bytes all with the same value can be condensed into two bytes, one
byte that stores the count (or run length) and a second byte that stores the value in the run.
These two bytes are sometimes called a frequency/data pair.

Figure 3.8.11 shows run length
encoding applied to a run of six
contiguous bytes each of value 128. The
amount of data stored is reduced from 6
bytes to 2 bytes by this data compression method.

RLE can be used to compress bitmap images.

Each run of pixels of the same colour is encoded as a frequency/data pair (run
length/pixel colour value).

The following example shows how RLE could be applied to a bitmap that encodes the intensity of each pixel in 8
bits and that starts with the sequence

15, 15, 15, 15, 15, 15, 15, 15, 46, 81, 123, 58, 98, 98, 98, 98, 7, 7, 7, 8, ...

The compressed sequence of bytes is
8, 15, 1, 46, 1, 81, 1, 123, 1, 58, 4, 98, 3, 7, 1, 8, ...

where the red values indicate counts.
The original 20 bytes in the example have been reduced to 16 bytes.
Example

Black and white images such as shown in outline in Figure 3.8.12 can be
encoded using 1 to represent a white pixel and 0 to represent a black pixel.

The two-dimensional grid of pixels making up a black and white image may then
be represented in a bitmap by rows of 0s and 1s, one row per pixel row.

The ellipsis symbol ⃛ indicates more black or white pixels.

Suppose a row of this bitmap consists of the following run of 0s and 1s
00000001111111111110000001111111

1286128 128 128128 128 128

Figure 3.8.11 Run length encoding compression of 6 bytes into 2 bytes

Run of 6 bytes 2 bytes

Information
Contiguous:
Means next to each other or
together in sequence.

Figure 3.8.12 Part of a black
and white image made up of
rows of pixels

Questions
(a) Create a Huffman coding tree for the letters shown in Table 3.8.11.

(b) What is the average size of code? Show your working.

(a) Create a Huffman coding tree for the letters
shown in Table 3.8.12.

(Note that there is more than one possible tree).

(b) What is the average size of code?
Show your working.

10
Letter Frequency

e 1/3
a 1/4
d 1/6
n 1/6
b 1/12

Table 3.8.11 Letter frequencies

Letter Frequency
A 1/30
B 1/30
C 1/30
D 2/30
E 3/30
F 5/30
G 5/30
H 12/30

Table 3.8.12 Letter frequencies

11

Candidates are not required
to know how to create a
Huffman tree.

Institution licence - St Martins School Essex

3 Fundamentals of data representation

199

Using run length encoding this row becomes

7 0 12 1 6 0 7 1

This is a simplification because the amount of storage space allocated to each frequency/data pair has been ignored.

In this chapter you have covered:

 ■ What data compression is

 ■ Why data may be compressed and that there are different ways to compress data

 ■ How data can be compressed using Huffman coding

 ■ Interpreting and creating Huffman trees

 ■ Calculating the number of bits required to store a piece of data compressed using Huffman coding

 ■ Calculating the number of bits required to store a piece of uncompressed data in ASCII

 ■ How data can be compressed using run length encoding (RLE)

 ■ Representing data in RLE frequency/data pairs.

Questions

Bit patterns are often compressed.
Compress the following bit pattern using run length encoding.

1111 0000 0111 0000 0001 1111

12

Institution licence - St Martins School Essex

200

 ■ 4.1 Hardware and software

What is hardware?
The hardware of a computer is the physical components, electronic and
electrical, that it is assembled from. It is the platform on which software
executes.

What is software?
Software consists of sequences of instructions called programs which can be
understood and executed by the hardware in its digital electronic circuits or a
virtual machine equivalent.

In this chapter you have covered:

 ■ The terms hardware and software and the relationship between them.

Learning objectives:

 ■ Define the terms hardware
and software and understand
the relationship between them.

4 Computer systems
4 Computer systems

Questions

What is meant by hardware?

What is meant by software?

1

2

Key concept

Hardware:
The hardware of a computer
is the physical components,
electronic and electrical, that
it is assembled from. It is the

platform on which software
executes.

Key concept

Software:
Consists of sequences of
instructions called programs
which can be understood and
executed by the hardware in its
digital electronic circuits or a
virtual machine equivalent.

Institution licence - St Martins School Essex

201

 ■ 4.2 Boolean logic

Background to logic gates
An electrical circuit such as shown in Figure 4.2.1 is made with wires, a switch,
batteries and lamps.

When the switch labelled X is closed the lamp Q is lit (ON) and when X is
open, the lamp Q is not lit (OFF).

Table 4.2.1 shows the possible states of lamp Q for the two possible states of
switch X.

It is more convenient to express the possible states of switch X by answering
the question: “Is switch X closed?”. Table 4.2.2 shows the possible answers
expressed using values NO and YES.

Learning objectives:

 ■ Construct truth tables for the
following logic gates:

• NOT

• AND

• OR

• XOR

 ■ Construct truth tables for
simple logic circuits using
combinations of NOT, AND,
OR and XOR gates

 ■ Interpret the results of simple
truth tables

 ■ Create, modify and interpret
simple logic diagrams

 ■ Create and interpret simple
Boolean expressions made up
of NOT, AND, OR and XOR
operations

 ■ Create the Boolean expression
for a simple logic circuit

 ■ Create a logic circuit from a
simple Boolean expression.

4 Computer systems
4 Computer systems

Questions
Switch X has two possible positions, open or closed.
What position must the switch be in for the lamp Q to be lit?

1

State of switch X State of lamp Q
OPEN OFF

CLOSED ON

Table 4.2.1 Possible states of switch X and lamp Q

Is switch X closed? Meaning
NO Switch X is not closed
YES Switch X is closed

Table 4.2.2 Possible answers to the question

X

Q

Lamp

Switches

Battery

Figure 4.2.1 Simple electrical circuit

Institution licence - St Martins School Essex

4 Computer systems

202

The corresponding question for lamp Q is “Is lamp Q on?”.

Table 4.2.3 shows the possible answers expressed using values
NO and YES.

Truth tables
Now we move from questions to statements which are either true or false.

If the statement “Switch X Closed” is true for the circuit shown in Figure 4.2.1 then the statement “Lamp Q On”
is true.

If the statement “Switch X Closed” is false for the circuit shown in Figure 4.2.1 then the statement “Lamp Q On”
is false.

This is summarised for the circuit if Figure 4.2.1 in a truth table as
shown in Table 4.2.5.

Truth tables deal with statements considered either true or false.

Is lamp Q on? Meaning
NO Lamp Q is not on
YES Lamp Q is on

Table 4.2.3 Possible answers to the question

Questions
Figure 4.2.2 shows an electrical circuit with two switches X
and Y, and one lamp Q.
Copy and complete Table 4.2.4 by writing YES or NO in
the blank rows.

2

Is switch X closed? Is switch Y closed? Is lamp Q on?
NO NO NO

Table 4.2.4

X Y

Q

Lamp

Switches

Battery

Figure 4.2.2

Switch X Closed Lamp Q On
FALSE FALSE
TRUE TRUE

Table 4.2.5

Questions
Figure 4.2.3 shows an electrical circuit with two switches X
and Y, and one lamp Q.
Copy and complete Table 4.2.6 by writing TRUE or
FALSE in the blank rows.

3

Switch X Closed Switch Y Closed Lamp Q On
FALSE FALSE FALSE

Table 4.2.6

X

Y

Q

Lamp

Switch

Battery

Figure 4.2.3

Institution licence - St Martins School Essex

4.2 Boolean logic

203

Logic gates
You must be able to construct truth tables for NOT, AND, OR and XOR logic gates
and simple logic gate circuits as well as be able to create, modify and interpret simple
logic gate circuit diagrams. However, you are not required to know or understand the
various technologies from which logic gates are constructed.
NOT logic gate

Consideration of one technology from the past may, however, make the use of logic
gates easier to accept. For this reason, we will consider how a particular logic gate called
a NOT gate can be made using relay technology.
A relay uses an electromagnet to close or open a switch in an “output” circuit depending on how the output circuit
is wired to the relay. Figure 4.2.4 shows a relay in which the output circuit is wired between poles 1 and 2 of the
relay. The output circuit could equally well have been wired between poles 1 and 3.
If the electromagnet is energised, its iron core becomes magnetic, which in turn pulls on the flexible metal contact
moving it away from pole 2 and into contact with pole 3. Whereupon, the output circuit becomes disconnected if
connected between poles 1 and 2 and vice versa if connected between poles 1 and 3.

Figure 4.2.5 shows an output circuit which is connected between poles 1 and 2. On the input circuit side, poles 4
and 5 connect the electromagnet of the relay to a battery and a single switch X.

In Figure 4.2.5(a), switch X is open in the input circuit and switch Y in the output circuit is in the position which
connects the battery to lamp Q. The lamp is lit.
In Figure 4.2.5(b), switch X is closed in the input circuit and switch Y in the output circuit is in the position which
disconnects the battery from lamp Q. The lamp is not lit.
Table 4.2.7 shows the truth table for the operation of the circuit shown in Figure 4.2.5.

We simplify this truth table as shown in Table 4.2.8. What is of interest is whether there is current flowing in the
input circuit (TRUE or FALSE) and similarly, whether there is current flowing in the output circuit (TRUE or
FALSE.

Input
circuit

Relay

Output
circuit

Electromagnet

1
2

3
4

5

Figure 4.2.4

Switch X Closed Lamp Q On
FALSE TRUE
TRUE FALSE

Table 4.2.7 Truth table for circuit shown in Figure 4.2.5

Input Output
FALSE TRUE
TRUE FALSE

Table 4.2.8 Simplified truth table for circuit shown in Figure 4.2.5

X

Battery

Battery Lamp
Q

Y

X

Battery

Battery

Electromagnet
energised

Lamp
QY

4

1 2

3

5

4

1 2

3

5

Figure 4.2.5
(a) (b)

Institution licence - St Martins School Essex

4 Computer systems

204

Figure 4.2.6 shows the relay circuit used in Figure 4.2.5 rejigged with the relay and battery used in the output
circuit partially obscured in a red/blue box. Switch X has been replaced by a switch that can connect to the 5 volts
terminal of a battery used to energise the electromagnet or its 0 volts terminal to remove its energy supply.

Table 4.2.9 shows an alternative representation within the truth table,
one which uses voltages with 5 volts corresponding to TRUE and 0 volts
corresponding to FALSE (the two voltages just have to be sufficiently
different to be distinguishable).

If we let binary 1 stand for 5 volts or any energising voltage and binary 0 for
0 volts then Table 4.2.9 can be simplified to the representation shown in Table 4.2.10.

The circuit at the heart of Figure 4.2.6 is called a NOT logic gate. It is also shown
in Figure 4.2.7(a).

Table 4.2.10 is the truth table for this NOT gate.

Figure 4.2.7(b) shows the equivalent ANSI/IEEE standard 91-1984 standard
symbol for a NOT gate.

Figure 4.2.8 shows this NOT gate symbol being used in a circuit. Figure 4.2.9 shows all that is needed to
understand the effect of the NOT gate on its input. Figure 4.2.10 shows the input generalised to X and the output
to Q. Table 4.2.11 shows the truth table for a NOT gate in terms of input X and output Q.

Input Output
0 volts 5 volts
5 volts 0 volts

Table 4.2.9 Truth table for circuit
shown in Figure 4.2.6

Input Output
0 1
1 0

Table 4.2.10 Truth table for
circuit shown in Figure 4.2.6

Figure 4.2.6

Input
circuit

Output
circuit

1
2

3
4

5

X

Q5 volts

(b)

5 volts

0 volts 0 volts

Input
circuit

Output
circuit

1
2

3
4

5

X

Q5 volts 5 volts

0 volts 0 volts

(a)

1
2

3
4

5

(a) (b)
Figure 4.2.7

X

5 volts

0 volts

Q

Figure 4.2.8

X

5 volts

0 volts

Q10

01
Figure 4.2.9

X Q
0 1
1 0

Table 4.2.11 Truth table for NOT gate

QX

Figure 4.2.10 NOT gate with input
X and output Q

Institution licence - St Martins School Essex

4.2 Boolean logic

205

AND logic gate

Another logic gate is the AND gate. This has two inputs and one
output as shown in Figure 4.2.11. The lamp is lit because both
inputs are connected to 5 volts otherwise the lamp would not be lit.

Its truth table is shown in Table 4.2.12 with one particular ordering
of rows. Figure 4.2.12 shows its IEEE logic gate symbol.

OR logic gate

Another logic gate is the OR gate. This has two inputs and one output
as shown in Figure 4.2.13. The lamp is lit because at least one input is
connected to 5 volts otherwise the lamp would not be lit.

Its truth table is shown in Table 4.2.13 with one particular ordering of
rows. Figure 4.2.14 shows its IEEE logic gate symbol.

XOR logic gate

Another logic gate is the eXclusive-OR or XOR gate. This has two
inputs and one output as shown in Figure 4.2.15. The lamp is lit if X is
connected to 5 volts and Y is connected to 0 volts or if X is connected
to 0 volts and Y is connected to 5 volts. However, if both X and Y are 0
volts or 5 volts, the lamp is not lit.
Its truth table is shown in Table 4.2.14 with one particular ordering of
rows. Figure 4.2.16 shows the logic gate symbol used by AQA.

X

Y

AND gate

0 volts

0 volts

5 volts

5 volts

0 volts

Q

Figure 4.2.11 AND logic gate with
inputs X and Y, and output Q

X Y X AND Y
0 0 0
0 1 0
1 0 0
1 1 1

Table 4.2.12 Truth table for AND logic gate
with inputs X and Y and output X AND Y

Figure 4.2.12 AND logic gate
IEEE symbol

Figure 4.2.14 OR logic gate
IEEE symbol

X Y X OR Y
0 0 0
0 1 1
1 0 1
1 1 1

Table 4.2.13 Truth table for OR logic gate
with inputs X and Y, and output X OR Y

X

Y

OR gate

0 volts

0 volts

5 volts

5 volts

0 volts

Q

Figure 4.2.13 OR logic gate with
inputs X and Y, and output Q

Information
You may experiment with virtual logic gates
using an online simulator at
https://academo.org/demos/logic-gate-simulator/

X

Y

XOR gate

0 volts

0 volts

5 volts

5 volts

0 volts

Q

Figure 4.2.15 XOR logic gate with
inputs X and Y, and output Q

Figure 4.2.16 XOR logic gate
AQA symbol

X Y X XOR Y
0 0 0
0 1 1
1 0 1
1 1 0

Table 4.2.14 Truth table for XOR logic gate
with inputs X and Y, and output X XOR Y

Information
ANSI/IEEE XOR symbol

Institution licence - St Martins School Essex

4 Computer systems

206

Constructing truth tables for simple logic circuits
Figure 4.2.17 shows a simple logic gate circuit consisting of an AND gate
and a NOT gate.

You are required to be able to construct truth tables which contain up to
three inputs. In Figure 4.2.17, A and B are inputs, X is an intermediate
value which forms the input to the NOT gate.

Its truth table is shown in Table 4.2.18. The inputs to the AND gate are A and B. The
output X from the AND gate forms the input X to the NOT gate. The output from
the NOT gate is labelled Q.

Figure 4.2.18 shows another logic gate circuit consisting of an OR gate, an AND gate
and a NOT gate.

Its truth table is shown in Table 4.2.19. The inputs
to the OR gate are A and B. The output X from
the OR gate forms the first input to the AND gate.
The second input to this AND gate comes from B.

The output from the AND gate is labelled Y.

This forms the input Y to the NOT gate.

The output from the NOT gate is labelled Q.

Figure 4.2.19 shows a logic gate
circuit with three inputs A, B and
C.

Its truth table is shown in Table
4.2.20. It has eight rows since there
are eight possible different combinations of
three inputs, each input consisting of 0 or 1.

The inputs to the first AND gate are A and B. The output X from this AND gate forms
the first input to the second AND gate. The second input to this AND gate is C. Its output is Q.

Questions
Identify the logic gate with inputs X and Y, and output Q
whose truth table is shown in Table 4.2.15.

Identify the logic gate with inputs X and Y, and output Q
whose truth table is shown in Table 4.2.16.

Identify the logic gate with inputs X and Y, and output Q
whose truth table is shown in Table 4.2.17.

4
X Y Q
1 1 1
0 0 0
1 0 0
0 1 0

Table 4.2.15

X Y Q
1 1 1
0 0 0
1 0 1
0 1 1

Table 4.2.16

5

X Y Q
1 1 0
0 0 1
1 0 1
0 1 0

Table 4.2.17

6

A
X Q

B
Figure 4.2.17 Logic gate circuit

A B X Q
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Table 4.2.18A
X

Y Q

B Figure 4.2.18 Logic gate circuit

A B C X Q
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 0 1 0 0
1 1 0 1 0
1 1 1 1 1

Table 4.2.20

A B X Y Q
0 0 0 0 1
0 1 1 1 0
1 0 1 0 1
1 1 1 1 0

Table 4.2.19A
X

QB

C

Figure 4.2.19 Logic gate circuit

Institution licence - St Martins School Essex

4 Computer systems

207

Creating logic gate circuits
You are expected to be able to construct simple logic circuit diagrams which contain up to three inputs.

Consider the following example for which the specification is as follows:

A logic circuit is being developed for an automatic alarm system protecting a store room:

• The alarm system has two sensors, sensor A and sensor B. Sensor A is activated if the front door to the store
room is open. Sensor B is activated if the back door to the store room is open.

• The alarm system can be turned on/off using a manual switch, S. The alarm system is not enabled unless S is
on.

• The alarm is to sound if either door or both are open and the manual switch is on otherwise the alarm is to be
silent.

• The output from this logic circuit is Q.

Complete the logic circuit diagram shown in Figure 4.2.21 for this system:

The way to tackle a logic circuit design problem is to
• identify the inputs
• identify the output
• look for the following keywords/key phrases

 ♦ Either ... or
 ♦ Or both
 ♦ But not both
 ♦ And
 ♦ And both
 ♦ Not

Questions
Complete the truth table shown in Table 4.2.21 for the logic gate circuit shown in Figure 4.2.20.7

A
X Y

Q

B

A B X Y Q
0 0
0 1
1 0
1 1

Table 4.2.21Figure 4.2.20 Logic gate circuit

A

B

S

Q

Figure 4.2.21 Logic gate circuit

Institution licence - St Martins School Essex

4.2 Boolean logic

208

In the given alarm system specification we can identify:

“The alarm is to sound if either door or both are open”,
“Sensor A is activated if the front door to the store room is opened”,
“Sensor B is activated if the back door to the store room is opened”.
This suggests an OR logic gate with inputs A and B as shown in Figure 4.2.22.
When sensor A is activated its output is 1 otherwise its output is 0.
When sensor B is activated its output is 1 otherwise its output is 0.
“The alarm is to sound if either door or both are open and the manual switch is on
otherwise the alarm is to be silent”.
When the switch S is on its output is 1 otherwise its output is 0.
This suggests an AND logic gate with inputs X and S as shown in Figure 4.2.23.

The solution is therefore obtained by combining these two logic circuits as shown in Figure 4.2.24.

A
X

B
Figure 4.2.22

X

S Q

Figure 4.2.23

A

B

S
Q

Figure 4.2.24

Questions
A logic circuit is being developed for an automatic plant watering system:

• The plant watering system has two sensors, sensor A and sensor B. Sensor A is activated when the
soil in the plant pot is dry. Sensor B is activated when the light level is above a threshold value.

• The plant watering system can be turned on/off using a manual switch, S. Plant watering will not
occur unless S is on.

• Plant watering is to occur when the soil is dry and the light level is above the threshold value and the
manual switch is on.

• The output from this logic circuit, for whether plant watering occurs or not, is Q.
Complete a copy of the logic circuit diagram for this system:

In a cockpit warning system for an aircraft’s landing gear, a warning lamp is lit if the left landing wheel is
up and the right landing wheel is down, or vice versa, otherwise the warning lamp is not lit. Each landing
wheel has its own sensor which senses the wheel’s state and outputs a 0 if the landing wheel is up and a 1 if
it is down. The left landing wheel’s sensor is labelled A and the right wheel’s sensor B. The output from the
logic circuit which performs the warning function is Q.
Complete a copy of the logic circuit diagram for this system:

8

A

B

S

Q

9

A

B
Q

Institution licence - St Martins School Essex

4 Computer systems

209

Questions

A logic circuit is being developed to control a motor system:

• The motor can be in one of three possible states at any one moment in time:
 ♦ Rotating forwards
 ♦ Rotating backwards
 ♦ Stopped

• The electric motor system has two sensors, sensor A and sensor B. Sensor A is activated when a
control paddle is in the down position. Sensor B is activated when the control paddle is in the up
position. When the control paddle is in the neutral position, sensor A and sensor B are deactivated.

• The electric motor system can also be turned on/off using a manual switch, S. The electric motor
cannot be on if S is off.

• The motor is to rotate forwards when the control paddle is in the down position and S is on.
• The motor is to rotate backwards when the control paddle is in the up position and S is on.
• The motor is to be stopped if the control paddle is in the neutral position.
• There are two outputs from this logic circuit, U and D. Output U is connected to one side of the

motor and output D is connected to the other side. If U = 1 and D = 0 then the motor rotates
forwards. If U = 0 and D = 1 then the motor rotates backwards. If U and D are both the same, the
motor is stopped.

Complete a copy of the logic circuit diagram
for this system:

The following logic circuit consists of inputs X and Y and output Z.

Modify this circuit so that its new output Q is as shown in Table
4.2.22.

A logic circuit is being developed for a room protected by an interlocked door system:
• The room is entered by passing through two doors in succession, door A and door B.
• The system must prevent door A and door B from being open at the same time.
• The system has two sensors, sensor X and sensor Y. Sensor X is activated when door A is open.

Sensor Y is activated when door B is open.
• The output from this logic circuit, Q, when activated is used to prevent both doors from being open

at the same time. This is done by making Q active if door A is open and door B is closed or if door B
is open and door A is closed.

• Activated corresponds to logic value 1 and not activated to logic value 0.
Complete a copy of the logic circuit diagram for this system:

U

S

A

Motor

B
D

10

12

X
Z

Y

Sensor X

Sensor Y

Q

11 X Y Q
0 0 1
0 1 1
1 0 1
1 1 0

Table 4.2.22

Institution licence - St Martins School Essex

4.2 Boolean logic

210

Boolean variables
In 1847 George Boole, an English mathematician, introduced a shorthand notation for a system of logic originally
set forth by Aristotle. Aristotle’s system dealt with statements considered either true or false. Here are two examples:

It is sunny today.

Today is Tuesday.

Quite clearly these two statements are either True or False. If today is Wednesday then the statement “Today is
Tuesday” is False. Table 4.2.23 shows the possible outcomes of examining the truth of each statement.

Just as we might use an integer variable G to record the number of goats in a farmer’s field so we can use variable
X as shorthand for “It is sunny today”, and Y for “Today is Tuesday”. The values that G can be assigned are the
natural or counting numbers. For X and Y, we have only two possible values, True or False, to assign. We call X and
Y Boolean variables, after George Boole who introduced this form of algebra called Boolean algebra. Table 4.2.24
shows the Boolean variable equivalent of Table 4.2.23 for “It is sunny today” expressed as Boolean variable X.
Boolean algebra deals with Boolean values that are typically labelled True/False (or 1/0, Yes/No, On/Off).

As digital computers rely for their operation on using the binary number system, Boolean algebra can be applied
usefully in the design of the electronic circuits of a digital computer. Using Boolean values 1 and 0 instead of True
and False, True in Table 4.2.24 becomes 1 and False becomes 0 as shown in Table 4.2.25. X = 1 now means that “It
is true that it is sunny today” and X = 0 means “It is not true that it is sunny today”.

It is then a small step to use Boolean variables to represent the state of components such as switches and indicator
lamps as follows:

• a switch can be either closed (1) or open (0) and

• an indicator lamp can be either on (1) or off (0).

Statement Outcome
It is sunny today False True
Today is Tuesday False True

Table 4.2.23 Possible outcomes for truth of statements

X
(It is sunny today) Meaning

False It is not sunny today
True It is sunny today

Table 4.2.24 Boolean variable representation of truth statements

X Meaning
0 It is not sunny today
1 It is sunny today

Table 4.2.25 Boolean variable representation of truth statements using
0 in place of False and 1 in place of True

Institution licence - St Martins School Essex

4 Computer systems

211

Boolean expressions
In Figure 4.2.25, the output Q is determined by the operation of the OR
gate on the two Boolean inputs X and Y which may be 0 volts (binary 0) or
5 volts (binary 1).

We can write this as OR(X, Y) or (X OR Y) where OR denotes the
operation performed by the OR gate on inputs X and Y. The outcome is Q.

However, we can write this another way as a Boolean expression using the
Boolean variables X and Y and the OR operator symbol + as follows

X + Y

The evaluation of this expression by the OR logic gate produces output
Q. Writing Q as a Boolean variable we obtain

Q = X + Y

The truth table for this expression is shown in Table 4.2.26.

For AND(X, Y) or (X AND Y) where AND denotes the operation
performed by the AND gate on inputs X and Y (Figure 4.2.26), we
can write the equivalent expression using the Boolean variables X and
Y and the AND operator symbol • as follows

X • Y

The evaluation of this expression by the AND logic gate produces output
Q. Writing Q as a Boolean variable we obtain

Q = X • Y

The truth table for this expression is shown in Table 4.2.27.

In Figure 4.2.27, the output Q is determined by the operation of the
NOT gate on the Boolean input X.

For NOT(X) or (NOT X) where NOT denotes the operation performed by the NOT gate on input X, we can
write the equivalent expression using the Boolean variable X and the NOT operator symbol as X.
The evaluation of this expression by the NOT logic gate produces output Q. Writing Q as a Boolean variable we
obtain Q = X
The truth table for this expression is shown in Table 4.2.28.

X

Y

OR gate

0 volts

0 volts

5 volts

5 volts

0 volts

Q

Figure 4.2.25 OR logic gate with
inputs X and Y, and output Q

X Y X + Y
0 0 0
0 1 1
1 0 1
1 1 1

Table 4.2.26 Truth table for the Boolean
expression X + Y

X

Y

AND gate

0 volts

0 volts

5 volts

5 volts

0 volts

Q

Figure 4.2.26 AND logic gate with
inputs X and Y, and output Q

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

Table 4.2.27 Truth table for the Boolean
expression X • Y

X

5 volts

0 volts

Q

Figure 4.2.27 NOT logic gate
with input X and output Q X

5 volts

0 volts

Q

X X
0 1
1 0

Table 4.2.28 Truth table for the
Boolean expression X

Institution licence - St Martins School Essex

4.2 Boolean logic

212

For XOR(X, Y) or (X XOR Y) where XOR denotes the operation
performed by the XOR gate on inputs X and Y (Figure 4.2.28), we can
write the equivalent expression using the Boolean variables X and Y and
the XOR operator symbol ⊕ as follows

X ⊕ Y

The evaluation of this expression by the XOR logic gate produces output
Q. Writing Q as a Boolean variable we obtain

Q = X ⊕ Y

The truth table for this expression is shown in Table 4.2.29.

Examples
Ex1: We may write the expression (NOT A) AND (NOT B) using operator notation
as follows

(For convenience, the • operator is just written as .)

Figure 4.2.29 shows the equivalent logic gate circuit for the Boolean expression

Ex 2: We may write the expression (A AND B) OR (NOT C) using operator notation as follows

Figure 4.2.30 shows the equivalent logic gate circuit for this Boolean expression

A . B

X

Y

XOR gate

0 volts

0 volts

5 volts

5 volts

0 volts

Q

Figure 4.2.28 XOR logic gate with
inputs X and Y, and output Q

X Y X ⊕ Y
0 0 0
0 1 1
1 0 1
1 1 0

Table 4.2.29 Truth table for
Boolean expression X ⊕ Y

A A

BB

A B

Figure 4.2.29 The equivalent logic circuit for the Boolean expression A . B

A . B

(A . B) + C

A

Q
B

C

Figure 4.2.30 The equivalent logic circuit for the Boolean expression (A . B) + C

Information

Writing A • B as A.B or AB
We can write A • B as A.B
We can even omit the •
operator and write the Boolean
variables one after another, e.g.
A • B as AB.

Institution licence - St Martins School Essex

4 Computer systems

213

Ex 3: We may write the expression (A AND B) OR (A AND C) using operator notation as follows

A.B + A.C
Figure 4.2.31 shows the equivalent logic gate circuit for this Boolean expression

Ex 4: We may write the expression (A AND (NOT B)) OR ((NOT A) AND B) using operator notation as follows

Figure 4.2.32 shows the equivalent logic gate circuit for this Boolean expression

A

A
Q

B

C
Figure 4.2.31 The equivalent logic circuit for the Boolean expression A.B + A.C

 (A • B) + (A • B)

A

B
Q

Figure 4.2.32 The equivalent logic circuit for the Boolean expression A • B + A • B

Questions
Write the Boolean expression for the following
(a) ((NOT A) OR B) AND (A OR (NOT B)) (b) ((NOT A) AND (NOT B)) OR (A AND B)

(c) (A XOR B) AND C (d) NOT(A AND B)

(e) NOT((A AND B) OR (A AND C))

Write the Boolean expression for the logic circuit
shown in Figure 4.2.33.

Write the Boolean expression for the logic circuit
shown in Figure 4.2.34.

Draw the logic circuit for the Boolean expression
(a) A ⊕ B (b) A + (B + C)

(c) (A . B) + (A . C) (d) (A + B) . (A + C)

13

14

15

A

B
C

Figure 4.2.33 Logic circuitA B

Q

C

D

Figure 4.2.34 Logic circuit

16

Institution licence - St Martins School Essex

4.2 Boolean logic

214

In this chapter you have covered:

 ■ Truth tables for the following logic gates:

• NOT

• AND

• OR

• XOR

 ■ Constructing truth tables for simple logic
circuits using combinations of NOT,
AND, OR and XOR gates

 ■ Interpreting the results of simple truth
tables

 ■ Creating, modifying and interpreting
simple logic diagrams.

 ■ Creating and interpreting simple Boolean
expressions made up of NOT, AND, OR
and XOR operations. Using the following
symbols

• • or . to represent AND gate

• + to represent OR gate

• ⊕ to represent XOR gate

• Overbar or to represent the NOT gate

 ■ Creating the Boolean expression for a simple logic circuit

 ■ Creating a logic circuit from a simple Boolean expression.

Logic gate Symbol Truth table

NOT

AND

OR

XOR

X Y X OR Y
0 0 0
0 1 1
1 0 1
1 1 1

X Y X AND Y
0 0 0
0 1 0
1 0 0
1 1 1

X NOT X
0 1
1 0

X Y X XOR Y
0 0 0
0 1 1
1 0 1
1 1 0

Institution licence - St Martins School Essex

215

 ■ 4.3 Software classification

Computer software may be classified as follows:

1. The system programs (or system software), which control the operation of
the computer itself, e.g. the operating system.

2. The application programs (or application software), which solve problems
for their users, e.g. constructing a letter using word processing software for
printing and sending to someone.

What is system software?
A computer system uses a layer or layers of software to enable users to operate
the computer without having to be familiar with its internal workings. This
layer or layers is called systems software and includes the operating system and
other forms of systems software such as anti-virus software, disk defragmenters,
backup software.

What is application software?
Applications software is an application program or programs designed to
support user-oriented tasks which would need to be carried out even if
computers did not exist. For example, communicating in written form, placing
orders for goods, looking up information.

Application software cannot execute unless it has been first translated into
the language of the computer, machine code, or a form that is executable by a
computer.

It needs to be loaded into main memory and it needs to obtain input from
input devices such as keyboards and to write output to output devices such as
printers and it may need to communicate with other computers.

Application software may need to store information permanently and to
subsequently access stored information. The stored information should be
backed up so, if necessary, it may be restored from a back-up copy. These
services are provided by the operating system and utility software without
which it would not be possible to run application software.

Application software may be classified as

• General purpose application software: software that is appropriate
for many application areas is described as general-purpose application
software. For example, word processing can be applied in writing-up
project work, in personal correspondence, writing memos, writing a
book, creating standard business letters. The software is relatively cheap

Learning objectives:

 ■ Explain what is meant by:
• system software
• application software

 ■ Give examples of both types of
software

 ■ Understand the need for, and
functions of, operating systems
(OS) and utility programs

 ■ Understand that the OS
handles management of the:

• processor(s)
• memory
• I/O devices
• applications
• security.

4 Computer systems
4 Computer systems

Key concept
System software:
A layer or layers of software
which enables users to operate
the computer without having
to be familiar with its internal
workings.

Key concept
Application software:
Application software is an
application program or
programs designed to support
user-oriented tasks which would
need to be carried out even if
computers did not exist.

Key concept
Software:
Consists of sequences of
instructions called programs
which can be understood and
executed by the hardware in its
digital electronic circuits or a
virtual machine equivalent.

Institution licence - St Martins School Essex

4 Computer systems

216

because its development costs are spread among all the purchasers of the
software, which in the case of popular application software will be a large
number. It is likely to be very reliable because it has been produced by an
experienced team of programmers and tested on a large customer base.

• Special purpose applications software: special purpose application
software is used for a particular application. For example, a dentist might
use application software written specifically to record and process dental
treatments, a task that every dentist needs to do. A business might use an
accounting package for its accounts of sales. It is likely to be very reliable
because it has been produced by an experienced team of programmers
and tested on a large but specialised customer base.

• Bespoke software: when no general purpose or special purpose software
exists that could do the job, software must be written from scratch
to solve the specific problem or to support the required task. This
software is called bespoke (tailor-made) software. For example, a teacher
interested in finding out how frequently his students logged on to the
college’s computer network and for how long, wrote a program using
the programming language C to handle this task because no application
program existed which could do this job.

Understand the need for, and functions of, operating systems
(OS) and utility programs
Systems software can be classified as follows:

• Operating system software: an operating system is a program or suite of
programs which controls the entire operation of a computer

• Utility programs: a utility program is a systems program designed to
perform a common place task, for example, formatting and partitioning
a disk or checking a disk for viruses. Some utility programs are supplied
with the operating system, others can be installed at a later time.

Questions
Explain what is meant by:
(a) system software (b) application software.

Give one example of system software and one example of application
software.

1

2

Key concept
Different types of application
software:
1. General purpose
2. Special purpose
3. Bespoke.

Key concept
System software classification:
1. Operating systems
2. Utility programs.

Institution licence - St Martins School Essex

4.3 Software classification

217

The most fundamental of all the system programs is the operating system.

An operating system performs several major functions:

• Hiding the complexities of the hardware from the user so that the user
is presented with a machine which is much easier to use.

• Managing the hardware resources to give an orderly and controlled
allocation of the processors and processor time, memories and input/
output (I/O) devices among the various programs competing for them,
and manage data storage.

 � The operating system (OS) will need to schedule processor time
for each executing program loaded into RAM. In a single processor
system, this may be done on a round robin basis or some other
way of allocating processor time fairly and appropriately. The
task becomes a little more challenging if there is more than one
processor.

 � The OS will need to manage the allocation of space in RAM to
programs and unload programs that have finished their execution -
memory management.

 � The OS will need to manage the allocation and release of areas of
storage, e.g. disk blocks - disk management.

 � It will also need to manage the file/directory system which structures
storage into files and directories - file management.

 � The OS will need to respond to I/O devices that need attention, e.g.
when a key on the keyboard has been pressed or when a disk block
of file data has finished being transferred into RAM. It will need to
know how to "drive" I/O devices because the OS will be responsible
for handling the transfer of data between the processor/RAM and
I/O devices, e.g. writing a disk block of data to a disk file. The
OS will rely on pieces of software to do this called device drivers.
Their software will have been written for a specific device or type of
device, e.g. a disk device driver.

• Managing the loading, unloading of application software.

• Managing user accounts, passwords and access to the system in order
to secure the system against unauthorised access, alteration and deletion
of data.

Key concept
Functions of an operating
system:
1. Hiding the complexities of
the hardware from the user so
that the user is presented with
a machine which is much easier
to use.
2. Managing the hardware
resources to give an orderly
and controlled allocation of the
processors and processor time,
memories and input/output
(I/O) devices among the various
programs competing for them,
and manage data storage.
3. Managing the loading
and unloading of application
software.
4. Managing user accounts,
passwords and access to the
system in order to secure the
system against unauthorised
access, alteration and deletion
of data.

Questions
Explain the purpose of an operating system.

Give one example of a utility program.

3

4

Institution licence - St Martins School Essex

4 Computer systems

218

In this chapter you have covered:

 ■ What is meant by:

• system software

• application software

 ■ Examples of both types of software

 ■ The need for, and functions of, operating systems (OS) and utility programs

 ■ That the OS handles management of the:

• processor(s)

• memory

• I/O devices

• applications

• security.

Institution licence - St Martins School Essex

219

 ■ 4.4 Classification of programming languages and translators

Levels of programming language
There are two levels of programming language:

• low-level language

• high-level language.

Low-level programming languages
There are two levels of low-level programming languages:

• machine code

• assembly language.

EDSAC and machine code
On May 6th, 1949, EDSAC ran its first program which printed a table of
squares for integers in the range 0 to 99. The program took two minutes to
run. The program of order codes had been punched on paper tape as 5-bit
binary codes (see Figure 4.5.1.3 in Chapter 4.5.1).
The order codes represented arithmetic and logical orders, shifts, jumps, data
transfer orders, input and output orders and stop orders.
The word “order” was literally an order for EDSAC to do something.
These order codes were the first programming language, a low-level language
known as machine code that was interpreted directly by the hardware of
EDSAC.
Two examples of these order codes are shown in Table 4.4.1 where each 5-bit
order code is expressed as a single letter.
The single letter order codes were typed on a machine that punched the
corresponding 5-bit code directly onto paper tape (see Information panel
opposite for the 1951 film on how EDSAC was used in practice).
Addresses were also expressed in decimal and then translated into binary.

Learning objectives:
 ■ Know that there are different
levels of programming
language:

• low level language
• high-level language

 ■ Explain the main differences
between low-level and high-
level languages

 ■ Know that machine code
and assembly language are
considered to be low-level
languages and explain the
differences between them

 ■ Understand that ultimately
all programming code written
in high-level or assembly
languages must be translated
into machine code

 ■ Understand that machine code
is expressed in binary and is
specific to a processor or family
of processors

 ■ Understand the advantages
and disadvantages of low-
level language programming
compared with high-level
language programming

 ■ Understand that there are
three common types of program
translator:

• interpreter
• compiler
• assembler

 ■ Explain the main differences
between these three types of
translator

 ■ Understand when it would be
appropriate to use each type of
translator.

4 Computer systems
4 Computer systems

Table 4.4.1 Examples of EDSAC order codes

Letter form
of order

code

5-bit binary
equivalent of

order code
Address Description

A 11100 n
Add the content of location n
to the accumulator.

S 01100 n
Subtract the content of location
n from the accumulator.

Information
EDSAC film:
https://www.youtube.com/
watch?v=6v4Juzn10gM
Maurice Wilkes’ 1976 commentary
on the 1951 film about how EDSAC
was used in practice.

Institution licence - St Martins School Essex

4 Computer systems

220

Figure 4.4.1 shows a snippet of an EDSAC order code program. Each
character represents a 5-bit code.

Machine code is a language consisting of bit patterns/binary codes that a
machine can interpret, i.e. execute. For this reason, machine code is referred to
as executable binary code. For example, the EDSAC executable binary code
instruction

0010100000010101
means “transfer the content of the accumulator to storage location 21.”

A machine code instruction is an operation which a machine is capable
of carrying out, i.e. the processor in the central processing unit. This direct
relationship with the hardware gives machine code instructions their low-level
classification. Therefore, higher-level operations for which there is no direct
machine counterpart have to be broken down into a sequence of machine code
instructions.

Each type of processor or family of processors, e.g. ARM Cortex, has its own
specific machine code instruction set. Today, the set of order codes of the
EDSAC would be called its instruction set.

What is a machine code program?
A machine code language program is a program consisting of executable
binary codes.

Assembly language
Writing programs directly in machine code is challenging.
The EDSAC programmers wrote their programs using letters for the operation
to be performed and addresses in decimal using the digit characters ‘0’..’9’.

The hardware on which they typed these letters and digit characters was wired
to punch paper tape with the 5-bit equivalent of each.

We would call the form of the program shown in Figure 4.4.1 which uses
letters, an assembly language program.
In assembly language, a (symbolic) name is assigned to each operation/
instruction code.
The operation/instruction code name is called a mnemonic or memory jogger.

Questions
What is machine code?

What is a machine code instruction?

Why is machine code classified as a low-level programming language?

1

2

3

Key concept

Machine code:
Machine code is a language
consisting of bit patterns/
binary codes that a machine can
interpret, i.e. execute. For this
reason, machine code is referred
to as executable binary code.

Key concept

Machine code instruction:
A machine code instruction is
an operation which a machine is
capable of carrying out.

Key concept

Low-level programming
language:
The direct relationship with the
hardware gives machine code
instructions their low-level
classification.

T123SE84SPSPSP10000SP1000SP100SP10SP1S

QS#SA40S!S&S@SO43SO33SPSA46S

T65ST129SA35ST34SE61ST48SA47ST65SA33SA40S

Figure 4.4.1 EDSAC order code

Institution licence - St Martins School Essex

4.4 Classification of programming languages and translators

221

The operation code mnemonic should describe in some way what the
instruction does, e.g. LDR means LoaD a Register, ADD means add - see
Table 4.4.2. The address field &1234 is expressed in hexadecimal (& is used to
indicate this).

There is a ONE-to-ONE mapping between an assembly language instruction
and its equivalent machine code language instruction.

For example,

LDR Rd, &1234 might be assembled to 000000 0001 01001000110100

The one-to-one mapping makes translating instruction mnemonics into the
binary of machine code a simple task that can be assigned to a computer. The
translator is called an assembler.

Assembly language is often used to develop software for embedded systems and
for controlling specific hardware components.

An embedded computer system is loosely defined as any device that includes
a programmable computer but which is not intended to be a general purpose
computer like a desktop PC. Cars are full of embedded computer systems
such as an antilock brake system (ABS) and an engine management system.
Embedded systems interface with sensors and actuators (a device for controlling
a mechanism) at a very low level. Hence, the need to program at a low level.

The Internet of Things (IoT) is connecting to more and more remote devices
consisting of sensors and actuators in embedded systems. This has resulted in a
rising demand for assembly language programmers to program these systems.

The input/output hardware controllers of devices such as hard disks operate at a
low level. It is therefore appropriate to use assembly language for programming
these components of a computer system. These programs are called device
drivers.

Table 4.4.2 Some assembly language instructions

Assembly language Description

LDR Rd, &1234

LDR means LoaD a Register with content of a
memory location or word, Rd is the symbolic name
for the register, &1234 is the memory location’s
address expressed in hexadecimal.

ADD Rd, Rn, Rm
ADD means add content of registers Rn and Rm,
store result in register Rd.

STR Rd, &4321
STR means STore the content of the specified
Register in a memory location or word.

Key concept

Assembly language:
Assembly language is the
symbolic form of machine code.
Each operation/instruction code
of machine code is assigned a
symbolic name or mnemonic
describing what the instruction
does, e.g. ADD.
There is a ONE-to-ONE
mapping between an assembly
language instruction and
its equivalent machine code
language instruction.

Questions

What is assembly
language code?

What is the mapping
between assembly
language instructions
and machine code?

What language
translator is required
to translate assembly
language into machine
code?

4

5

6

Institution licence - St Martins School Essex

4 Computer systems

222

High-level languages (HLL)

As the 1951 EDSAC film showed, a problem had to be recast by hand into
a form that could use the machine code language of EDSAC. Wouldn’t it be
much better if the problem could be expressed in a programming language
much closer to the problem space (i.e. in a language easier for programmers to
understand), leaving the task of translating to machine code to the computer?
This thought led to the development in the 1950s of high-level languages, some
of which are still used. For example, Fortran (1957) was designed for numerical
applications and is still used by mathematicians, scientists and engineers, today.

High-level languages (HLL) are closer to English than they are to the machine.
This means that the mapping from a high-level language statement to machine
code will be a one-to-many mapping because each high-level language
statement will need to be broken down into several machine code operations.
For example, the assignment statement

 x = y + z

when translated could become in the assembly language form of machine code

LDR R0, &1234

LDR R1, &1235

ADD R2, R0, R1

STR R2, &1236

Advantages of programming in machine code and assembly
language compared with HLL programming
High-level language programs are converted into machine code by a translator
called a compiler. Most compilers attempt to optimise the machine code which
is produced. The compiler scans the machine code to see if it contains any
unnecessary code which it then attempts to remove or adapt. Fewer machine
code instructions means the code will take up less memory (smaller footprint)
as well as running more quickly when executed. However, the process is
not perfect, for example, where floating-point operations are concerned.
In embedded computer systems, where speed of execution is paramount or
memory is at a premium, the compiled code can be examined by hand and
sections that are not already optimised replaced by hand-coded assembly
language code, which is then assembled into machine code.

For short sections of code which need to run quickly or take up little space,
it may be better to code directly in assembly language. Some high-level

Key fact

Advantages of programming
in machine code and assembly
language:
Hand-coded assembly language
when assembled can

• achieve a smaller memory
footprint in machine code
than compiled high-level
language code

• achieve better code
optimisation than compiled
high-level language code
and therefore code that will
run faster

• directly access registers
and low-level operating
system routines which is
not possible with most
high-level programming
languages.

Key concept

High-level programming
language (HLL):
High-level programming
languages are problem-oriented
and therefore closer to English
than they are to the machine.
This means that the mapping
from a high-level language
statement to machine code will
be a one-to-many mapping
because each high-level
language statement will need
to be broken down into several
machine code operations.

Information

GNU Fortran:
GNU Fortran is the primary
open source version of the
Fortran compiler widely used
both in and out of academia. It
is one of the Fortran compilers
available for the Raspberry Pi.

Questions

What is meant by the term high-level programming language?

What is the mapping between high-level language statements and
machine code?

7

8

Institution licence - St Martins School Essex

4.4 Classification of programming languages and translators

223

programming languages allow assembly language code to be embedded (inline)
in the HLL program to take advantage of the time and space efficiency of
assembly language coding.

Assembly language and machine code programming allow direct access
to registers and low-level operating system routines which is not generally
possible with most high-level language programming languages.

Disadvantages of programming in machine code and assembly
language compared with HLL programming
Code written in assembly language or machine code is less readable than code
written in a high-level language and therefore more difficult to understand
and maintain, debug and write without making errors. Code written in
assembly language or machine code uses the instruction set of a particular
processor (processor family). It is therefore machine dependent and will
only execute on processors that use this instruction set. High-level languages
are machine independent. An HLL program is expressed in an English-
like language which is turned into machine code by a compiler. As long
as a compiler exists for a particular instruction set, the HLL program may
be ported to and its compiled version run on a computer with a different
instruction set processor from the one it was written on. HLL programs are
easier to understand and therefore maintain than assembly language programs
because they are written using statements that are close to English. They are
less error-prone when writing for the same reason.

Questions

State three disadvantages of programming in assembly language
compared with programming in a high-level language.

10

Key fact

Disadv. of programming in
machine code and assembly
language:
Code written in assembly
language or machine code is less
readable than code written in a
high-level language and so more
difficult to

• understand and maintain
• debug
• write without making

errors

Code written in assembly
language or machine code is
machine dependent making it
difficult to port to a different
instruction set processor
compared with code written
using high-level languages
which do port readily because
they are not machine-oriented.

Questions

State three advantages of programming in assembly language
compared with programming in a high-level language.

9

Institution licence - St Martins School Essex

4 Computer systems

224

Types of program translator
There are three types of program translator:

• Assembler

• Compiler

• Interpreter.

Role of an assembler
Programs written in assembly language have to be translated into machine code
before they can be executed. This is done with an assembler.

Machine code is a language that the machine can execute, i.e. it is executable
binary code (binary patterns for which machine operations are defined).

Assembly language is the mnemonic form of these executable binary codes.
Thus there is a one-to-one correspondence between an assembly language
statement and its machine code equivalent: one assembly language statement
maps to one machine code statement. This is in contrast to a high-level
language statement which typically maps to several machine code statements.

Role of a compiler
A compiler is a program that reads a program (the source code) written in
a high-level programming language (the source language) and translates it
into an equivalent program (the object code) in another language - the target
language. As an important part of this translation process, the compiler reports
the presence of errors in the source code program.

A compiler translates (compiles) a high-level programming language source
code program into a separate and independently executable object code
target language program. The target language program or object code
produced by the process could be

• Machine code of an actual machine (in which case the compiler is
called a native language compiler)

• Intermediate code which can, if necessary, be interpreted by an
interpreter, e.g. Java bytecode is an intermediate language produced by
a Java compiler

• Executable code for execution by a virtual machine.

A compiler translates one high-level language statement into several machine
code or target language statements.

A compiler only translates a high-level language program (the whole of the
program), it does not execute it.

The process that the compiler engages in is called compiling.

Key principle
Assembler:
An assembler translates
assembly language into machine
code.
One assembly language
statement maps to one machine
code statement.

Key principle
Compiler:
A compiler translates a high-
level programming language
source code program into a
separate and independently
executable object code target
language program. Object code
is typically machine code.

A compiler translates one high-
level language statement into
several machine code or target
language statements.

Institution licence - St Martins School Essex

4.4 Classification of programming languages and translators

225

Role of an interpreter
An interpreter is a program that executes a high-level programming language
program, statement by statement, by recognising the statement type of a
statement, e.g. X = X + 1, and then calling a pre-written procedure/function
for the statement type, to execute the statement. Therefore, an interpreter does
not, unlike a compiler, produce an independently executable target language
equivalent of the source language program. The application of interpreter to a
source code program is called interpreting.

The differences between compilation and interpretation
The major differences between the compilation and interpretation are:

• An interpreter both “translates” and executes whereas a compiler only
translates.

• A compiler produces a separate independently executable form of the
source code program whereas an interpreter does not.

• A compiler is not needed when target form of source program is
executed whereas in the case of the interpreter, execution requires the
source code form of the program together with the interpreter, i.e.
the interpreter needs to be available on the machine where the program
is being run.

• If an interpreter is used then only the source code form of program is
needed to execute the program whereas, if a compiler is used then the
object code form of program is needed in order to execute the program.

• Interpreters are usually easier to write than compilers.
• With the compiler approach, if an error is discovered while the

program is executing, the source form of program must be located.
An editor and the source form of the program must be loaded. The
error must be pin-pointed which is not always easy and then corrected.
The compiler must be loaded and a compilation carried out. The new
target form of program must then be loaded and executed. With an
interpreter, the execution is halted at the point where the error occurs.
The interpreter gives precise details of location of error. The error is
corrected with an editor which may be co-located with interpreter. If
it isn’t, an editor will have to be loaded. However, no time-consuming
compilation is involved and execution can resume immediately.

Key principle
Interpreter:
An interpreter is a program
that executes a high level
programming language
program, statement by
statement, by recognising the
statement type of a statement
and then calling a pre-written
procedure/function for the
statement type, to execute the
statement.

Key principle
Interpreter vs compiler:
An interpreter both “translates”
and executes whereas a
compiler only translates.

Key principle
Interpreter vs compiler:
A compiler produces a separate
independently executable form
of the source code program
whereas an interpreter does not.

Key point
Ultimately all programming
code written in high-level or
assembly languages must be
translated into machine code:
 An electronic digital computer
can only execute machine code
instructions. Therefore assembly
and High Level Languages
(HLL) cannot be executed
directly without the use of a
translator.
A HLL may be executed
indirectly by using an
interpreter but the interpreter
in order to execute must be
presented to the computer in
machine code form.
Remember that the language of
an electronic digital computer
is binary.

Did you know?
A compiler consists of several stages:
• Lexical analysis – splits the source into user-defined “words”,

e.g. variable identifiers and language-defined “words”, e.g. While
• Syntax analysis – checks that statements are grammatically correct
• Semantic analysis – e.g. type checking, "A" + 3.142 is incorrect as you can’t add a

real to a string
• Intermediate code generation
• Code optimising
• Code generation

Institution licence - St Martins School Essex

4 Computer systems

226

Situations in which assemblers, compilers and interpreters
would be appropriate
Assemblers
For time-critical sections of code where execution speed is important, e.g.
interrupt service routines, assembly language still has a role to play because in
the hands of a skilled programmer, assembly language code can be written that
is highly optimised for speed. As an assembler simply translates one assembly
language statement into one machine code statement, that optimisation is
preserved. Compilers can optimise code but the result cannot be guaranteed
to be fully optimised for the given hardware. In the pecking order of execution
speed, interpreters come after compilers.

Assembly language is still used where direct access to hardware is required e.g.
processor registers or I/O controller registers. This is the case when writing
device drivers, e.g. a screen driver. In this instance an assembler would be
required to translate the assembly language program into machine code.

Compilers and interpreters
It is considerably more productive to write programs in high-level languages
than in assembly language. There are relatively few programmers who are
skilled in writing assembly language programs compared with the number
of programmers skilled in writing in one or more high-level programming
languages.

Compiled code which has been compiled into machine code of the computer
will execute a lot faster than its interpreted source code equivalent (i.e.
interpreter + the source code equivalent of the compiled code).

The immediate feedback and ease of locating errors in source code give
interpreters an advantage over compilers when developing programs. This
advantage is particularly beneficial for novice programmers or when programs
are being prototyped and the write, compile, debug, edit cycle can be too time
consuming.

Compiling has an advantage over interpreting because it produces a separate
executable which means that the source code program does not have to be
distributed. There are plenty of situations where this is desirable such as when
producing commercial software or where there is a requirement is to protect the
algorithm or coding technique used.

Key principle
When to use assembly
language:
Where speed of execution and/
or direct access to hardware is
required, use assembly language
and an assembler.

Key principle
Interpreter vs compiler:
Where rapid debugging and
immediate feedback on errors is
required including pinpointing
the location of both syntax
and runtime errors, use an
interpreter.

Key principle
Interpreter vs compiler:
Compiled code which has been
compiled into machine code of
the computer will execute a lot
faster than its interpreted source
code equivalent (i.e. interpreter
+ the source code equivalent of
the compiled code).

Key principle
Interpreter vs compiler:
Where a separate executable
that can execute independently
of its source code equivalent is
required, use a compiler.

Questions
Give two reasons why
programs are still written
in assembly language.

Given a choice, under
what circumstances
would it be preferable to
use:

(a) a compiler;
(b) an interpreter?

13

14

Questions

Explain the role of each of the following:
(a) assembler (b) compiler (c) interpreter

State three differences between compilation and interpretation.

11

12

Institution licence - St Martins School Essex

4.4 Classification of programming languages and translators

227

In this chapter you have covered:

 ■ That there are different levels of programming language:

• low level language

• high-level language
 ■ The main differences between low-level and high-level languages
 ■ That machine code and assembly language are considered to be low-level

languages
 ■ The differences between machine code and assembly language
 ■ That ultimately all programming code written in high-level or assembly

languages must be translated into machine code

 ■ That machine code is expressed in binary and is specific to a processor or
family of processors

 ■ The advantages and disadvantages of low-level language programming
compared with high-level language programming

 ■ That there are three common types of program translator:

• interpreter

• compiler

• assembler

 ■ The main differences between these three types of translator

 ■ When it would be appropriate to use each type of translator.

Questions
Two computer programs that add two integers are shown
in Table 4.4.3.
One is written in a high-level language and one is written
in a low-level language.
Table 4.4.4 gives three correct reasons why computer
programs are most commonly written in high-level
languages (HLL) instead of low-level languages are
true. Tick these three correct reasons.

The low-level program shown in Table 4.4.3 is written in machine code.
Give two reasons why it would have been better for the programmer to have used assembly language instead
of machine code.

15

16
Table 4.4.4

Reason Tick three boxes
A HLL programs are easier to debug.
B HLL programs always run faster.
C Less time-consuming for a programmer to write a HLL program.
D HLL program code can be easier for humans to understand.
E Computers understand only HLL programs.

Table 4.4.3

High-level program Low-level program
r = 5 0100 0101
s = 3 0100 0011
t = r + t 1000 0000

0001 0010
1100 0011
1110 1100

Institution licence - St Martins School Essex

228

 ■ 4.5.1 Systems architecture

Von Neumann architecture
Between 1945 and 1951 John von Neumann (Figure 4.5.1.1) created a design
for a digital electronic computer as a system consisting of

• a memory called Main Memory, containing instructions and data

• a calculating unit called the Arithmetic and Logic Unit (ALU), for
performing arithmetic and logical operations

• a Control Unit, to fetch and interpret (decode and execute)
instructions stored in main memory

• an input device and an output device

• a method of connecting these together called a bus consisting of a
collection of wires (this bus is called the System Bus).

Figure 4.5.1.2 shows the basic architecture of John von Neumann’s computer.

The combination of Control Unit + Arithmetic and Logic Unit (ALU) is
called the Central Processing Unit (CPU) in modern computer systems.

Learning objectives:
 ■ Explain the von Neumann
architecture.

4 Computer systems
4 Computer systems

Figure 4.5.1.1 John von Neumann

Lesson activity

Download Activity 1 from www.educational-computing.co.uk/GCSE/Ch4.5.1/Activity1.pdf.
This activity consists of the six people engaging in executing a list of numbered instructions.
The six people are required to perform the following roles

1. Memory 2. Control Unit 3. Arithmetic and Logic Unit
4. Keyboard 5. Display 6. Bus

1

Control Unit

Coordinates activities of whole
system

including fetching, decoding and
executing instructions

Arithmetic and Logic Unit
Performs arithmetic and logical

operations

Main Memory
Store for both data and

program instructions

Keyboard

Input
device

CPU

Bus

Output
device

Display

D
is

pl
ay

In
te

rf
ac

e
Ke

yb
oa

rd
In

te
rf

ac
e

Figure 4.5.1.2 Von Neumann architecture

Memory module

Central
Processing

Unit

Modern CPU

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk/GCSE/Ch4.4.1/Activity1.pdf

4 Computer systems

229

The von Neumann architecture was an improvement over the program-controlled computers of the 1940s, such as
Colossus and ENIAC, which had no memory so had to be programmed by inserting patch leads (cables) to route
data and control signals between various functional units - Figure 4.5.1.4.
In the ENIAC, patch leads needed to be unplugged and then re-plugged in a new position to reprogram the
computer to complete a different task.
Von Neumann’s design is much more flexible because it can be reprogrammed by simple loading a different
program, as well as the program’s data, into read-write main memory (random access memory (RAM)).

Programs and their data are kept ready to be loaded into main memory from another storage medium called
backing store (or secondary storage to differentiate this type of storage from main memory (primary memory)).
Punched paper tape was used for secondary storage in the early days (Figure 4.5.1.3).

A paper-tape reader attached to the keyboard
was used to input a program and its data from
the paper tape on which the program and its
data were represented by a series of punched
holes.

Computers based on von Neumann’s
architecture are sometimes called stored-
program computers because their programs
and data, if necessary, can be loaded into main
memory from a secondary storage medium,
e.g. magnetic disk.

Once finished with they are unloaded
(removed from main memory) and replaced in main memory by another
program until needed again.

Loading and unloading are operations carried out by the stored-program
computer.

Figure 4.5.1.4 ENIAC computer being reprogrammed by changing the wiring
(U.S. Army photo, http://ftp.arl.army.mil/~mike/comphist/)

Patch cables

Information

The University of Manchester’s
Small-Scale Experimental
Machine is generally recognised
as the world’s first electronic
computer that ran a stored
program - an event that
occurred on 21st June 1948.
However, the EDSAC (designed
and built at Cambridge
University) is considered
the first complete and fully
operational electronic digital
stored program computer. It ran
its first program on 6th May
1949. The design was inspired
by John von Neumann’s First
Draft of a Report on the
EDVAC.
EDVAC, America’s first
electronic digital stored program
computer wasn’t available to run
until August 1949.

Figure 4.5.1.3 Paper tape used to store data and computer
programs in the 1950’s

Institution licence - St Martins School Essex

4.5.1 Systems architecture

230

Characteristics of the von Neumann architecture
A computer system with a von Neumann architecture is characterised by

• Memory (common name Main Memory) which is used to store both program instructions and data

• Data from Main Memory and from devices are accessed in the same way via the bus system

• Data and instructions in Main Memory are indistinguishable from each other.

In a digital computer, instructions and data are represented internally by numbers.
If these numbers are stored together in Main Memory then it becomes difficult without
guidance to distinguish numbers which represent instructions from numbers which
represent data.

For example,

• The instruction INPUT might be represented internally by the number 234 and

• A datum (value) which is to be interpreted as the integer 234 might also be
represented internally by the number 234

• The contents of Main Memory from beginning to end just consists of
numbers - Figure 4.5.1.5

• Some numbers represent instructions

• Some numbers represent data (values to be manipulated by
instructions or values which are the results of such manipulation or
values from input devices)

• Some numbers represent memory addresses, and

• Some numbers are simply rubbish left over from previous computer
activities.

It is the logic in computer programs that instructs a computer to treat one
number as an instruction and another as a value.
Sometimes the logic of a computer program is faulty and the computer tries
erroneously to execute data. This situation is exploited by computer viruses
which are first downloaded as data but then, by a bit of trickery, can be treated
as programs and executed.

1
2
3
4
5
6
7
9

65535
65534
65533
65532
65531
65530
65529
65528
65527

Main Memory

0

234

0

230
25

231
100

96
4

245
56

200

131
0

16
42

145
253

112

Addresses

The content
of Main
Memory
locations
can be
treated as
numbers
representing
di�erent
things

Memory
location

Figure 4.5.1.5 Main Memory
consisting of consecutively
numbered storage locations

IN
PUT = 234

Integer 25 = 25

ADD = 230

Integer 234 = 234

Instructions and Data

Lesson activity

Download Activity 2 from www.educational-computing.co.uk/GCSE/Ch4.5.1/Activity2.pdf.
This activity is similar to Activity 1 in using six people to perform the roles of the parts of a computer
system but differs in the way that the two integers are obtained. This time the two integers are fetched
from memory.

2

Questions

Von Neumann’s design for a digital electronic computer consisted of an input device, an output device
and four other components. Name these four other components.

1

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk/GCSE/Ch4.4.1/Activity1.pdf

4 Computer systems

231

Von Neumann computer system as a collection of subsystems
Figure 4.5.1.6 shows the major subsystems (components) of a computer system based on the von Neumann
architecture.

The subsystems are classified as either internal or external.

Questions
Select the letter from the list below which labels the answer which you think best describes what Main
Memory stores temporarily in a digital electronic computer based on von Neumann’s architecture

A Instructions
B Data
C Data or instructions, but not both
D Data and instructions

Explain what is meant by “Data and instructions in Main Memory are indistinguishable from each other”.

Select the letter from the list below which labels the answer which you think best describes how data from
Main Memory and from devices are accessed in von Neumann’s architecture

A Via the keyboard
B Via the bus system
C Via the control unit
D Via the Arithmetic and Logic Unit

2

3

4

VDU
output

controller

Visual
Display

Unit
(VDU)

Keyboard

Processor

Keyboard
input

controller

(Disk) I/O controller

Secondary store or backing
store

(e.g. magnetic disk)

Main memory
or

immediate access store
(RAM or RAM & ROM)

Bus
(comonly

known as the
System Bus)

Figure 4.5.1.6 Block diagram of the von Neumann architecture

Lesson activity

Download Activity 3 from www.educational-computing.co.uk/GCSE/Ch4.5.1/Activity3.pdf.
In both Activity 1 and Activity 2, the operations performed by six people were coordinated by
arrangement but not by time. If the operations are to be coordinated by time then a clock is required.

3

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk/GCSE/Ch4.4.1/Activity1.pdf

4.5.1 Systems architecture

232

Internal subsystems

The internal components are

• Processor or Central Processing Unit (CPU) - contains the control
unit, the arithmetic and logic unit, registers (a register is a store with its
own identity used for storing a single number temporarily which could
represent an address, a value, an instruction or the status of something),
and a clock for sequencing operations within the computer system

• Main memory (normally a mix of RAM and ROM)

• I/O controllers - input only, output only, both input and output -
which connect the CPU to input and output devices, and secondary
storage

• Bus - a collection of wires connecting the internal components, data/
signals are transmitted along the bus from one component to another.

External components

The external components do not interact directly with the CPU but are
largely on the periphery of the computer system and are known, therefore, as
peripherals or peripheral devices - for example, the keyboard, visual display unit
(e.g. flat screen monitor), printer, magnetic disk drive.
Interaction between CPU and peripherals

The main processor, or CPU, exchanges data with a peripheral device through
an I/O controller.

Peripheral devices are not connected directly to the CPU because the former
often operate with signal levels, protocols and power requirements which are
different from those used by a CPU.

Therefore, peripherals are not under the direct control of the CPU instead they
are controlled indirectly through an I/O controller.

In this chapter you have covered:

 ■ The von Neumann architecture

• internal components

 � processor or Central Processing Unit (CPU)

 � main memory (RAM or a mix of RAM and ROM)

 � I/O controllers - input only, output only, both input and output

 � bus - collections of wires connecting components

• external subsystems

 � components not connected directly to the processor (CPU)

 � they are called peripherals, e.g. keyboard, printer, flat screen
monitor, magnetic disk drive.

Key concept
Peripheral:
A peripheral is a device that
is connected to the computer
system but which is not under
the direct control of the
processor. Instead the processor
interacts with the peripheral
indirectly via the peripheral’s
I/O controller which sits
electrically between the
peripheral and the system bus.
Examples of peripherals are
keyboard, VDU, mouse, printer.

Institution licence - St Martins School Essex

233

 ■ 4.5.2 Systems architecture

Main memory
The basic requirement of memory is to be able to write some information into
it, leave it there, and return later to read it.

 ■ Main memory serves this purpose in
von Neumann’s architecture.

 ■ It consists of a collection of individual
storage cells, each capable of storing a single bit - Figure 4.5.2.1.

These are grouped together into rows of a fixed size, e.g. 8 cells, and called
memory locations. Figure 4.5.2.2 shows a single row or memory location
with contents 01011100.

 ■ Each memory location is assigned a unique physical address and the
memory locations are organised together as shown in Figure 4.5.2.3 with
addresses from 0 upwards.

In Figure 4.5.2.3, addresses are expressed in 8-bit binary.

The lowest memory location is assigned the
unique memory address 00000000, the next
00000001, and so on, with the memory
address increasing by one each time.

The highest memory location is assigned the
last possible address in 8-bit binary, 11111111.

In this example, there are 256 memory
locations.

The size in bits of a memory location is
normally a power of 2, e.g. 23 = 8 bits as shown
in Figure 4.5.2.3.

Learning objectives:
 ■ Explain the role and operation
of main memory and the
following major components
of a central processing unit
(CPU) within the von
Neumann architecture:

• arithmetic logic unit
• control unit
• clock
• register
• bus.

4 Computer systems
4 Computer systems

11101010

11101010

11101010
11101010

11101010
11101010

11101010

11101010

11101010
11101010
01011100
11101010
11101010
11101010

00000000
00000001
00000010
00000011
00000100

10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101

11111111

Contents

Memory
location

Address

Figure 4.5.2.3 Shows the
current contents of a block
of 256 memory locations,
with each location designed
to store 8 bits

Information

Magnetic core memory was the
predominant form of random
access main memory (RAM) for
20 years between about 1955
and 1975. Such memory was
often just called core memory, or,
informally, core.
Magnetic-core memory uses the
magnetisation of tiny magnetic
rings, the cores, to write and read
information.

Each core represents one bit
of information. When not
being read or written, the cores
maintain the last value they had,
even when power is turned off.
This made them non-volatile.

1 bit

Memory
cell

Storing
binary 0

Storing
binary 1

 1 0

Figure 4.5.2.1 Single memory cell

0 001 1101

Figure 4.5.2.2 Single memory location consisting of eight memory cells

Institution licence - St Martins School Essex

4 Computer systems

234

A memory location is the smallest addressable unit of memory:

 ■ Nothing smaller than a memory location can be accessed directly

 ■ The contents of a memory location are read by selecting it by address and
copying the contents,
e.g. the memory location in Figure 4.5.2.3 with address 10001001 has
contents 01011100 expressed in binary

 ■ The contents of a memory location are changed by selecting it by address
and replacing its current contents by another value.

Figure 4.5.2.4 shows a single location selected by address when the CPU sends
the location’s address, encoded as on and off signals, along the bus connecting
the CPU to the main memory. This bus is called the system bus.

If the requested action is reading from memory then the contents of the
memory location shown in Figure 4.5.2.4 appear on the bus wires connecting
main memory to CPU.

In von Neumann’s architecture, reading from and writing to main memory
is made possible by dividing the system bus1 into address bus, data bus and
control bus as shown in Figure 4.5.2.5.

1 You do not need to know that the system bus is divided into address, data and
control bus.

0Read control
Write control

8 wires
for 8-bits
of data

8 wires for an
8-bit address

Address
decoder

001 1101

10 00 001 1

Figure 4.5.2.4 Single memory location consisting of eight memory cells

Keyboard
controller

Visual
display

controller

Magnetic
disk

controller

Main
memory

Processor
(CPU)

Address bus

Control bus

Data bus

Figure 4.5.2.5 Von Neumann architecture showing the
subdivision of the system bus into data bus, address
bus and control bus

Key concept
Memory location:
A memory location is the
smallest addressable unit of
memory.

Institution licence - St Martins School Essex

4.5.2 Systems architecture

235

Reading from main memory

The 256 main memory locations shown in Figure 4.5.2.3 are
shown in Figure 4.5.2.6 packaged into a single memory chip
(integrated circuit) of 256 locations each capable of storing one
byte of data which can be any of the following

• an instruction
• a number
• an address
• a letter.

For a program to be executed it must first be loaded into the
main memory of the computer. The computer can then start the
execution as follows2:

 ■ The CPU sends an address to main memory to start
retrieving the program

 ■ This address just consists of a series of 1s and 0s encoded
as on and off signals on the address bus wires connecting
the CPU to the main memory

 ■ The main memory doesn’t do anything with this address
until the CPU turns on the Read wire

 ■ When the Read wire is turned on by the CPU, the main
memory automatically sends whatever is in the addressed
main memory location back to the CPU via the data
bus wires connecting the main memory to the CPU.
The Read wire connects the CPU to the Read pin on the
memory chip.

For example, to fetch the instruction at memory address decimal
139 (binary 10001011), the CPU sends 10001011 to the address
input of the memory chip (yellow pins connected to address
wires in Figure 4.5.2.6).
On turning on the Read wire connected to the read pin of
this memory chip, the addressed memory location’s contents,
11011010, appear on the data pins (yellow pins connected to the data wires in Figure 4.5.2.6).
This instruction is retrieved by the CPU from the data bus connected to the data pins and processed. Once the
CPU has dealt with this instruction it sends another address to main memory, turns on the Read wire and gets the
next addressed location’s contents. This process is repeated until the program has finished executing.

Writing to main memory

Writing to a memory location in main memory is done as follows
 ■ The CPU sends the address of the memory location from CPU to main memory along the address bus

wires of the system bus

 ■ The CPU sends what it wants to write to main memory along the data bus wires of the system bus

 ■ The Write wire is turned on and contents of the memory location are then changed.

2 The remainder of this “Reading from main memory” section whilst useful to know, covers more detail than
required for AQA’s GCSE specification 8525.

256
BYTES

Main Memoryaddress

Write Read

data

Instruction139

From CPU To CPU

10001011 11011010
Decimal

Instruction

Number

Instruction
Instruction

Instruction
Instruction

Number

Number

Instruction

Address e.g. 245

Instruction
Number e.g. 25

e.g. -32

Instruction
Letter e.g. ’A’

0
1
2
3
4

135
136
137
138
139
140
141
142

255

Address
in

decimal

Contents

Main Memory

Figure 4.5.2.6 A 256 byte memory chip
mounted on a circuit board

for main memory

Institution licence - St Martins School Essex

4 Computer systems

236

RAM

Memory is labelled random access if
 ■ Cells can be accessed in any order

 ■ The time to access any cell is the same wherever it is in memory.

Today’s computers use a type of semiconductor memory for main memory
called dynamic RAM or DRAM.
Information/data stored in modern RAM is lost when the power is removed.
Therefore, modern RAM is said to be volatile.

ROM

 ■ There is another type of random-access memory called Read Only
Memory or ROM that can also be present in main memory, i.e. its
memory locations can be addressed by the processor (CPU) in any
order.

 ■ This is memory that can be read from but not written to (during
normal operation).
It is also non-volatile which means that information/data stored in
ROM is retained when the power is removed.

ROM was used in early desktop computers (PCs) for the BIOS.
Software stored in the BIOS

• initialises and tests the system hardware components
• loads a boot loader or an operating system from a storage device.

Key term
Random Access Memory
(RAM)
Memory that permits access
to any of its address locations
(cells) in any desired sequence
with similar access time to each
location.
The term, as commonly used,
denotes a read/write memory
with unlimited data rewrite
capability and similar read and
write times.

Key term
Volatile memory:
A memory in which the data
content is lost when electrical
power is removed.

Questions

For each of the statements below indicate whether the statement is true or false by choosing the
appropriate letter.
(a) The contents of a memory location are read by selecting it by address and copying the contents.

A True
B False

(b) A memory location is made up of a collection of memory cells each of which can store one bit.
A True
B False

(c) The contents of a memory location are changed by selecting it by address and replacing its current
contents by another value.

A True
B False

1

Key term
Non-volatile memory:
A memory in which the data
content is retained when
electrical power is removed.

Information
Flash ROM:
Modern PCs, use a different technology called Flash ROM
for the BIOS. This is non-volatile random-access memory
which can be read from and, if necessary, written to.

Information
ROM:
Technically, the ROMs in use today are actually non-volatile
RAM because they can be written to or erased by the
processor. However, the convention is to use the term ROM
because erasing and rewriting is expected to be rare.

Institution licence - St Martins School Essex

4.5.2 Systems architecture

237

System bus
A bus is a collection of wires through which data/signals are transmitted
from one component to another.

The width of a bus is the number of bits that can be placed on the bus in one
go.

The external or system bus in a computer consists of a collections of wires
providing pathways between the CPU, memory modules (RAM), chipsets,
secondary storage and peripherals.

The classic “system bus” is a shared bus.

It has largely disappeared from today’s computer architectures and been
replaced, instead, by different serial and parallel bus systems designed and
developed to meet specific
requirements - Figure 4.5.2.7.

Although no system-wide system
bus exists in today’s computer
systems, logically, the manner of
driving memory and peripherals
has remained the same.

Questions

For each of the two statements below indicate whether the statement
is true or false by choosing the appropriate letter.
(a) ROM is volatile memory.

A True
B False

(b) RAM used in main memory can be read from and written to.
A True
B False

2

PC activity

Download CPU-Z from http://www.cpuid.com/softwares/cpu-z.html.
Using CPU-Z record the following:
(a) The CPU that your computer is using
(b) The type of RAM your system is using.

1

Key concept
Bus:
A bus is a collection of wires
through which data/signals
are transmitted from one
component to another.
The external or system bus
in a computer consists of a
collections of wires providing
pathways between the CPU,
memory modules (RAM),
chipsets, secondary storage and
peripherals.

Key term
Bus width:
The number of bits that can be
placed on the bus in any one go.

Information
The chipset is the link between
the individual components of
a computer, ensuring that all
components can communicate
successfully with each other.
Different voltage levels, clock
frequencies and protocols
are taken into account and
converted among each other so
that the different components
of the computer system work
together as intended.

M
em

or
y

co
nt

ro
lle

r

G
ra

ph
ic

s
co

nt
ro

lle
r

Chipset

CPU

Peripherals

Display

Main Memory

RAM module

RAM module

Memory channel

Bus

Peripheral Buses
Memory channel

Figure 4.5.2.7 Shows main memory linked to the CPU via a memory controller located in a chipset module

Institution licence - St Martins School Essex

http://www.cpuid.com/softwares/cpu-z.html

4 Computer systems

238

Arithmetic and Logic Unit (ALU)
The Arithmetic and Logic Unit (ALU) performs arithmetic and logical
operations on data supplied in registers, storing any result in a register as shown
in Figure 4.5.2.8.

It can perform, for example, addition and subtraction, fixed and floating point
arithmetic, Boolean logic operations such as AND, OR, XOR and a range of
shift operations.

The ALU3 operation shown in Figure 4.5.2.8 adds
integer 3 to integer -5 to produce the result -2.

The Status Register indicates a negative result by
setting its N bit to 1. In addition to the Status Register three other registers are
used, RegisterA, RegisterB and RegisterC.

 ■ A register is a store with its own identity used for storing a single
number temporarily.

 ■ It is usually constructed from the same semiconductor memory type as
Static RAM or SRAM. This is semiconductor memory which is much
faster to read from and write to than DRAM.

 ■

3 The remainder of this “Arithmetic and Logic Unit” section whilst useful
to know, covers more detail than required for AQA’s GCSE specification 8525
with the exception of the general role of registers.

RegisterC

ADD Control
Unit

Z

0

N

1

C

0

O

0

I

1

S

0

+

Status Register

Operation

-2

-53

RegisterA RegisterB

32

32

6

3232

ALU

Figure 4.5.2.8 ALU performing an ADD operation

Key term
(Beyond 8525 specification)
Static RAM (SRAM):
SRAM is semiconductor
memory in which memory
content is stored by means of
flip-flops, a type of logic gate
circuit with two stable states
- flip and flop. Static RAM
holds its contents as long as
power is available and doesn’t
need refreshing. However, the
consequence is higher power
consumption than DRAM and
therefore the generation of more
heat.
SRAM is expensive compared
with DRAM because fewer bits
can be stored per SRAM chip
than per DRAM chip. Therefore
SRAM is restricted to storage of
low capacity size, i.e. L1, L2 and
L3 cache or buffer memory and
registers where its superior speed
of operation can be exploited.
DRAM is much slower than
SRAM.

Information
DRAM (beyond 8525 specification) consist
of lots of tiny capacitors each of which store
an amount of electrical charge to represent a
single bit, more charge for 1 and less charge
for 0.
Even when connected to electrical power, any
stored charge drains away from the cell quite
quickly so the cell needs to be refreshed every
few milliseconds to reliably store data. This
refreshing with electrical charge gives the
memory its dynamic name.
Information/data stored in DRAM is lost
when the power is removed. Therefore,
DRAM is said to be volatile (RAM is not
necessarily volatile - see information panel on
magnetic core memory on the first page of
this chapter).
Nowadays, the term RAM has come to mean
random-access memory that is both read and
write.

Key term
Register:
A register is a store with its own identity used for storing a single number temporarily.
A central processing unit contains several registers performing different roles.
Registers are usually constructed from the same semiconductor memory
type as Static RAM or SRAM. This is semiconductor memory which is
much faster to read from and write to than DRAM.

Information
Knowledge of specific
registers is not required.

Institution licence - St Martins School Essex

4.5.2 Systems architecture

239

Control Unit
The control unit of the processor shown in Figure 4.5.2.9 controls fetching, loading and storing operations.4

It fetches an instruction into the Current Instruction Register via the Memory Buffer Register and the data bus.

The control unit also

• Decodes the instruction to determine if it is a load, store, arithmetic operation, or logic operation

• Executes the instruction by

 � using the instruction’s operand fields as addresses to use in load or store operations, if required, or

 � loading a memory word into a register, or

 � changing a word of memory in a store operation, or

 � controlling an arithmetic operation, e.g., ADD, or a logical operation, e.g., AND, in the Arithmetic and
Logic Unit (ALU) using as operands the instruction’s operand fields.

4 The remainder of this “Control Unit” section following this sentence whilst useful to know, covers more
detail than required for AQA’s GCSE specification 8525.

Instruction

Data
bus

Address
bus

Control
bus

Control Unit

Current Instruction
Register

Program Counter
RegisterC

Status Register

Memory Bu�er
Register

System
bus

Memory Address
Register

Operation

System
Clock

Result

Operand 2Operand 1

RegisterA RegisterB

32

64

32

64

64

6

6464

Address of
Next Instruction

ALU

Central Processing
Unit

Figure 4.5.2.9 Simplified internal structure of a processor/central processing unit

64 bits wide

32 bits wide

Institution licence - St Martins School Essex

4 Computer systems

240

Clock
The operations of all components on the motherboard are synchronised by
the system clock.

This is an oscillator which is controlled by a quartz crystal so that it produces
very stable and unvarying timing signals similar to those produced by the
quartz crystal controlled oscillator inside a wristwatch.

Chaos would reign if say, the CPU got out of step with main memory when
fetching, decoding and executing instructions. The situation would be akin
to missing the bus to school because your alarm clock went off late because it
was running slow.

Each component on the motherboard takes the system clock’s timing signals
(a continuous train of on-off pulses as shown in Figure 4.5.2.10) and derives
their own timing signals.

The various buses in the system also need timing signals, their bus clocks are
also synchronised with the system clock and scaled as needed.

Main memory needs timing signals as well and again these are synchronised
with and derived from the system clock.

Clock

ON Continuous train
of ON-OFF pulses

OFF

Figure 4.5.2.10 Continuous train of on-off pulses produced by clock

Information
Intel CPUs are sold to operate at a
specific, fixed CPU clock frequency
if locked. This clock frequency is set
well below the maximum frequency
at which the CPU can operate.
Therefore, Intel offer a variant for
sale which is unlocked, i.e. the
CPU clock frequency may be varied
considerably. This unlocked variant
is indicated by adding a “k” to the
CPU’s identifier, e.g. Intel’s 7th
generation i7 processors have a fixed
CPU clock frequency version, Intel®
Core™ i7-7700 and an unlocked
version, Intel® Core™ i7-7700k.
The locked CPU has a clock
frequency of 3.6 GHz whilst the
unlocked CPU’s clock frequency
may be overclocked up to 4.9 GHz.

Information
Timing:
For the computer system to work
properly things must happen at
the right time. This is achieved by
timing signals. For example, the
correct sequence for writing data
to memory is first to send out the
address on the address bus, and
then send out the data on the data
bus a few clock ticks later. Finally
a pulse has to be sent out on the
Write wire to actually write the data
into memory. This is an example of
timing.

Information
Timing:
The CPU needs to perform more
operations per second than the
motherboard, its clock (the CPU
clock), is generated by taking the
system clock and multiplying it by
a number which is either fixed or
if the CPU is unlocked, a number
which can be set by the user. If
unlocked then the CPU’s clock can
be overclocked by changing a BIOS
setting, to give a higher operating
clock frequency.

1
PC activity

Using CPU-Z obtained from http://www.cpuid.com/softwares/
cpu-z.html record the following:

(a) The core speed in MHz
(b) The multiplier value

(Both displayed values, core speed and multiplier, may fluctuate in
CPU-Z, so take the steadiest)
Calculate core speed/multiplier value. This should be the system
clock frequency for the motherboard. This is also the frequency of
the bus connecting CPU to RAM, which is called bus speed.

2

Key term
Clock:
The operations of all components on the motherboard are synchronised by the
system clock.
This is an oscillator which is controlled by a quartz crystal so that it produces very
stable and unvarying timing signals similar to those produced by the quartz crystal
controlled oscillator inside a wristwatch.

Institution licence - St Martins School Essex

http://www.cpuid.com/softwares/cpu-z.html
http://www.cpuid.com/softwares/cpu-z.html

4.5.2 Systems architecture

241

In this chapter you have covered:

 ■ The role and operation of main memory and the following major
components of a central processing unit (CPU) within the Von Neumann
architecture:

• arithmetic logic unit

• control unit

• clock

• register

• bus.

Questions

Four components of a CPU are given below. For each row in Table 4.5.2.1, choose the letter A, B, C, or D
that best matches the description.
A. Clock
B. Control Unit
C. Register
D. Arithmetic Logic Unit

3

Description Letter
Decodes the current instruction
A store with its own identity used to store a small
number of bits temporarily
A source of a continuous train of electronic pulses
Performs a calculation

Table 4.5.2.1

Institution licence - St Martins School Essex

242

Learning objectives:
 ■ Explain the effect of the
following on the performance
of the CPU:

• clock speed
• number of processor cores
• cache size
• cache type.

4 Computer systems
4 Computer systems

 ■ 4.5.3 Systems architecture

Effect of clock speed on CPU performance
To understand the effect of clock frequency on the performance of the CPU we
need to study a little background first. The following background detail is for
information only.
Figure 4.5.3.1 shows a motherboard example in which

• 133 MHz SDRAM main memory is connected by a 133 MHz data bus to a
1 GHz CPU

• The motherboard’s system clock operates at a speed or frequency of 133
MHz

• The motherboard’s BIOS contains configuration datum 7.5 for the CPU
clock multiplier

• The system clock actually oscillates at a frequency of 133.33 MHz, even
though its quoted frequency is 133 MHz.

• The data bus is clocked at a frequency/speed of 133 MHz (133.33 MHz),
the same as the system clock.

• The CPU obtains a value of 7.5 to use as its clock multiplier from the BIOS.
The CPU clock frequency is then generated by multiplying the system clock
frequency by 7.5 giving 1 GHz, a higher frequency than its external data
bus, but still synchronous with it.

The CPU clock frequency is calculated as follows

CPU clock frequency = 133.33 MHz x 7.5 = 1000 MHz = 1 GHz.

CPU

Motherboard

Data bus clock

Data bus
(Width 64 bits)CPU

clock

Clock
multiplier

Clock multiplier value

1 GHz

133 MHz

133 MHz

133 MHz

BIOS

SDRAM
Cell

Array

Memory clock

System
clock

7.5

Figure 4.5.3.1 133 MHz
Motherboard with a 1 GHz CPU
and SDRAM main memory

Information
Synchronous:
Synchronous means to be in
step in time or occur at the same
time.

Institution licence - St Martins School Essex

4 Computer systems

243

Clearly, if the system clock is up-rated to operate at a higher frequency then the
components that use the system clock will operate more quickly provided that
these components are also up-rated.

Figure 4.5.3.2 shows some of these up-rated components on a motherboard
that operates with a system clock frequency of 200 MHz.

• The processor now operates at 2.4 GHz, a frequency derived from the
system clock frequency of 200 MHz multiplied by a clock multiplier of 12.

• The bus connecting this processor to the chipset of logic gates driving the
memory controller and graphics controllers uses a clock frequency of 800
MHz. This is derived from the system clock.

• The memory bus uses a clock frequency of 400 MHz as the memory is now
double-rate, double frequency DRAM, DDR2 - see Figure 4.5.3.3.

Intel LGA775 Processor
2.4 GHz

FrontSide Bus (FSB)

800 MHz

Memory
bus clock
400 MHz

CPU clock 2400 MHz
Clock multiplier = 12
System clock x 12 = 2400 MHz

Transfer
operations

800
MegaTransfers/s

(800 MT/s)
Direct Media
Interface bus

Memory
clock

200 MHz

2 GT/s

2 GHz

5 GT/s

5 GHZ

A memory
word is 64

bits or
8 bytes

64 bits or
8 bytes

200 MHz

System
Clock

200 MHz

PCI Express x16

Intel G31
Graphics

and
Memory

controller

Intel ICH7
I/O

controller
hub

Graphics
Card

Analogue
video out

RGB

Sata
SATA

USB
USB

2x DDR2
DIMM

Modules

Figure 4.5.3.2 Up-rated processor,
memory and motherboard

SDRAM
Cell

Array

I/O
Bu�er

DDR 2

Memory Bus
frequency 2f

SDRAM accessed at
clock frequency fData clocked

onto bus at clock
frequency 2f

Data clocked
onto bus rising
clock signal and

falling clock
signal

Figure 4.5.3.3 DDR2 main memory module 4
transfers per memory clock, 2 per memory bus clock

The DDR in DDR2 stands for double-rate. DDR
means that two memory words can be placed on
the memory bus in one memory bus clock cycle
- one word on the rising edge and one word on
the falling edge . The 2 in DDR2 means that
memory words are clocked onto the memory bus
at twice the rate of the memory clock.

The latest DDR memory is DDR4. The meaning
of DDR is as stated above. The 4 means that
memory words are clocked onto the memory bus
at four times the rate of the memory clock.

Information
AQA’s specification does not
require you to know the detail
in Figure 4.5.3.2. This figure
is included here to provide a
modern context for the theory.

Institution licence - St Martins School Essex

4.5.3 Systems architecture

244

• Let’s say that the CPU executes an instruction in 2 clock cycles of the
CPU clock, on average.

• If the CPU clock frequency is 1 GHz then one clock cycle lasts one
nanosecond (1.0 x 10-9 seconds - light travels 30 cm in this time).

• A clock cycle is one on-off pulse of the clock signal as shown in Figure
4.5.3.4.

• Therefore on average, an instruction in this 1 GHz CPU takes 2
nanoseconds to execute.

• If the CPU clock frequency is changed to 2.4 GHz, not one but 2.4
instructions are executed in 2 nanoseconds, all other things being
equal.

However, raw clock speed is not a good way to compare CPUs, unless they are
from the same manufacturer, model, and family.

The reason is that the average number of cycles per instruction varies between
manufacturer, model and family because CPU architecture can be different.

For example, the first Pentium CPU executed about twice as many instructions
in a given number of cycles as its predecessor, the 80486 CPU.

Therefore, given the same clock speed, a Pentium I is twice as fast as a 80486
CPU. Consequently, a 133 MHz 486 CPU (such as the Intel 80486-133) is not
even as fast as a 75 MHz Pentium.

Cache Memory

As CPU processor speeds were increased (i.e. CPU clock frequency increased),
memory speeds (memory bus clock frequencies) were unable to keep up.

Trying to run a CPU faster than the memory from which it gets instructions
and data has an adverse effect on CPU performance.
Main memory and the memory bus
became a bottleneck (Figure 4.5.3.5)
that slowed the flow of data and
instructions between main memory
and the processor in the CPU.

The solution is cache memory.

In its simplest terms, cache memory
is a high-speed memory that temporarily stores data/instructions, so that the
processor does not have to go to the slower main memory to get every program
instruction or datum individually.

Instead the processor can access a whole block of instructions or data pre-
loaded from main memory into the cache.

One clock cycle
1 nanosecond

Time

ON

OFF

CPU
clock

Figure 4.5.3.4 CPU clock
cycles for a CPU clock
frequency of 1 GHz

Figure 4.5.3.5 A bottleneck
slows the flow

Information

Using the scenario from Figure
4.5.3.1, main memory is
Synchronous Dynamic RAM
(SDRAM) which operates
synchronously with the data
bus clock signal which itself is
derived from the system clock,
say 133 MHz.
The DRAM’s internal clock, the
memory clock, operates at the
bus speed 133 MHz.
The clock cycle time for the
memory is therefore 7.5
nanoseconds.
It takes several memory clock
cycles to set up a single read
access to memory. This set up
time could be as many as 8
memory clock cycles or 8 x 7.5
nanoseconds = 60 nanoseconds.
So the total time to read a
single word from memory is
60 + 7.5 nanoseconds = 67.5
nanoseconds.
In this time, the CPU can
execute approximately 34
instructions on average.
However, it will be held up
waiting 67.5 nanoseconds
until the next word of memory
arrives.

Information

GigaHertz (GHz):
1 GHz = 1000 000 000 cycles
per second = 1.0 x 109 cycles
per second.

Institution licence - St Martins School Essex

4 Computer systems

245

Cache memory sits between the processor in the CPU and main memory as
shown in Figure 4.5.3.6.

However, a cache is more than a simple high-speed memory.
It is designed to hold the data/instructions the processor is most likely to
need in advance of these actually being needed.
This enables the processor to continue working at either full speed or close to it
without having to wait for the data/instructions to be retrieved from slower main
memory. For this to be achieved, a cache controller (the “brain”) is needed which
selects and fills the cache memory with just those data/instructions which it
anticipates the processor is most likely to need.
Cache memory is usually made up of static RAM (SRAM).
SRAM is faster to access than the DRAM used for main memory.
Nowadays cache memory is integrated into the CPU whereas a long time ago, it
was provided in chipsets on the motherboard.
Effect of cache type and cache memory size on CPU
performance (Cache type not in AQA specification 8525)
Typically, processors work with multi-level caches that are different in size and
speed - Figure 4.5.3.7. The closer the cache is to the processor in the CPU, the

smaller and faster it works.
If there is more cache, there is a higher probability that data and
instructions being fetched will be in the cache which is quicker to
access than main memory.
If instructions and data processed by instructions can be fetched
directly from cache rather than the slower main memory then the
time taken to execute a program can be reduced.
L1 cache / first-level cache

As a rule, L1 cache is not particularly large - 16 to 64 kibibytes1 -
thus making it faster to access than L2 and L3 caches which are
larger. This cache is often subdivided into two caches, one for
program instructions and one for data. It runs at the same speed
as its CPU. The cache controller in modern CPUs usually has a
hit-rate of around 90%, i.e. 90% of the time the processor gets its
data/instructions from L1 cache.
L2 cache / second-level cache

L2 cache, is primarily used for data - typically 3 x 2048 kibibytes
in size. If in the CPU, it runs at the same speed as the CPU clock.
There is more of it than L1 cache but for this reason it is slightly
 slower to access than L1 cache.

1 You are not required to know the units kibibyte and mebibyte. Both are similar but slightly different in magnitude from
the units kilobyte and megabyte which you are required to know.

Processor

L1 cache

L2 cache

L3 cache

Main memory

Small
size and
very fast

Larger in size
than L1 cache

but slower

Larger in size
than L2 cache

but slower

Considerably
slower than

L3 cache

CPU

Cache controller

Figure 4.5.3.7 Cache memory hierarchy

Processor Cache

Main
memory

Figure 4.5.3.6 Cache memory situated between processor and main memory

Information
Kibibyte(KiB):
A kibibyte (a contraction of
kilo binary byte) is a unit
of information or computer
storage, symbol KiB.
1 KiB = 210 bytes = 1024 bytes.

Mebibyte(MiB):
A mebibyte (a contraction of
mega binary byte) is a unit
of information or computer
storage, symbol MiB.
1 MiB = 220 bytes
= 1048576 bytes
= 1024 kibibytes.

Key term
Cache:
A cache is a smaller, faster
memory, closer than main
memory to a processor core,
which stores copies of data/
instructions the processor is
most likely to need in advance
of these actually being needed.

Institution licence - St Martins School Essex

4.5.3 Systems architecture

246

L3 cache / third-level cache

L3 cache is the slowest to access of the three types of cache because there is more of it than L1 and L2 cache. It is
used in multi-core CPUs, i.e. CPUs with more than one processor (core) - typically, 8 mebibytes in size. In multi-
core CPUs the L3 cache is often shared amongst the cores. If in the CPU it runs at the clock speed of the CPU.

Questions

You try out a newly opened noodles bar and order a bowl of Tom Yum soup which takes 10 minutes to
arrive. You get through this dish in two minutes by eating at the rate of one mouthful every 10 seconds. You
then order Singapore noodles which takes 10 minutes to arrive. You eat this dish at the same rate as before.
To summarise, your eating experience at the noodles bar consists of periods of waiting, followed by short
bursts of actual eating at full speed.
You return to the noodles bar at the same time, twice a week for the next nine weeks, to eat the same two
dishes at the same table. On the third week, your regular waiter anticipates your arrival and orders your
two dishes so that the first is on your table ready for you to eat immediately and the second is on your table
when you finish the first.
If this scenario is considered to model a processor requesting and operating on data from memory then main
memory is the kitchen where the food is prepared and you are the processor consuming data (the food).
To model L1 cache and the cache controller we need to involve the waiter and the table where you are seated.
What role would you allocate to

(a) the waiter?
(b) the table?
(c) Explain your choice for cache controller and L1 cache.

On the tenth week you arrive exactly on time and start with the usual Tom Yum soup which the waiter has
anticipated you will, so there is no waiting.
However, just as you finish the soup, and exactly as the waiter is placing the Singapore noodles on your
table, you ask for Penang Laksa. Oh calamity, the waiter has guessed wrong. For you the consequence is a
full ten minute wait as the kitchen prepares your Laksa. In the cache analogy of question 1 this is known as a
cache miss. Suggest how the noodles bar could reduce your waiting time for other dishes, e.g. Penang Laksa,
to significantly less than ten minutes.

Explain why having cache memory can improve the performance of the Central Processing Unit (CPU).

1

2

3

PC activity

Download CPU-Z from http://www.cpuid.com/softwares/cpu-z.html.
Using CPU-Z record the following for the CPU in your computer:
(a) The size and type of each cache memory.
(b) The CAS latency of DRAM main memory in clock cycles (CAS = delay time between the READ
command and the moment the data is available).
(c) The DRAM clock speed (DRAM frequency).
(d) Calculate the access time to a word of main memory in your computer using your answer to (b) / your
answer to (c).

1

Institution licence - St Martins School Essex

http://www.cpuid.com/softwares/cpu-z.html

4 Computer systems

247

Effect of Number of processor cores on CPU performance
CPU clock speeds cannot be increased indefinitely because of various problems, one of which is heat generation in
the CPU.

CPU manufacturers have settled on a limit of about 4 GHz for CPU clock speed.

In single-core CPUs the processing unit is a single core or processor (registers, control unit, ALU, internal buses).

The restriction imposed by an upper limit on clock speed has led to CPU manufacturers making CPUs with
multiple-cores or processing units. Figure 4.5.3.8 shows a dual-core CPU in which each core has its own L1 and L2

cache whilst sharing the L3 cache.

With multiple cores, a running application can
spread its processing load (program instructions)
across several processing units or cores.

Of course, this requires the executing application
to be capable of being distributed across multiple
cores, plus the hardware in the CPU to support this
distribution.

Essentially, a single program instruction could be
distributed across multiple cores with each core
applying this instruction to a different part of the
data to be processed, e.g. different pixels of a bitmap.
Alternatively, different instructions could be
executed in parallel on different parts of the data,
e.g. add, subtract, multiply.

The outcome in both cases is an application that
runs more quickly on multiple-cores than it would
on a single core CPU.

Not all applications lend themselves to distribution across multiple-cores.
Applications which can benefit from multiple-cores are those in which
a single instruction can be applied to a different part of the data to be
processed e.g. image processing including 3-D rendering (Figure 4.5.3.9),
video processing, and audio processing, or where the some of application’s
instructions can be executed in parallel, e.g. machine learning applications.

Many applications do not require considerable computing power, e.g. word
processing, or cannot be divided up in a way that can exploit multiple-
cores. In these types of application a single-core is sufficient. However, an
operating system designed to use multiple-cores can still bring about an
increase in performance by running more than one application at the same
time, with each application executing on its own CPU core.

L3 cache

Main memory

Core

L1 cache

L2 cache

Core

L1 cache

L2 cache

Memory controller

Dual-core CPU

Dual channel
main memory
i.e. two 64 bit

channels

Figure 4.5.3.8 Multi-core CPU consisting of two cores

Figure 4.5.3.9 3-D scene rendering

Institution licence - St Martins School Essex

4.5.3 Systems architecture

248

In the history of multi-core processors, the adoption of dual-core CPUs over
single-core CPUs immediately resulted in less power being consumed because
the cores ran at a lower clock rate then single-core CPUs. Performance also
increased especially for those applications able to exploit dual-cores. Having
dual-cores is like having two diesel locomotives pulling a train on a railway
track with an upper speed limit of 100 mph:

• overkill if the load being pulled doesn’t need two diesel locomotives to
achieve the maximum speed

• necessary when the load being pulled is heavy and the maximum track
speed needs to be achieved.

A multiple-core CPU still has to work with a single main memory but their
added complexity has led to the memory controller being integrated into the
CPU in the latest CPUs. The memory controller works with motherboards
that use dual-channel DIMM sockets for memory modules (the modules are
paired). Each channel transfers a 64 bit memory word at the same time. This
fits well with a dual-core CPU with the first channel’s memory word going to
one core and the second channel’s memory word to the other.

Questions

Give one reason why a CPU with two cores might perform faster than an equivalent CPU with only one
core.

4

PC activity

Download PerfMonitor2 from http://www.cpuid.com/softwares/perfmonitor-2.html.
Using PerfMonitor2 record the following for the CPU in your computer:
(a) The number of cores.
(b) The L2 cache hit ratio which measures as a percentage the number of times the data required is present
in the cache.
(c) How many cores are more than 5% active at the same time.

Run CPU-Z and PerfMonitor2 so that the windows of both are visible.
Switch to the Bench tab in CPU-Z. Leave the reference field unselected.
Click on the Stress CPU button in CPU-Z and note what you observe in the PerfMonitor2 window.
Click on the Stop button in CPU-Z and note what you observe in the PerfMonitor2 window.

2

3

Institution licence - St Martins School Essex

http://www.cpuid.com/softwares/perfmonitor-2.html

4.5.3 Systems architecture

249

In this chapter you have covered:

 ■ The effect of the following on the performance of the CPU:

• clock speed

• number of processor cores

• cache size

• cache type.

Institution licence - St Martins School Essex

250

 ■ 4.5.4 Systems architecture

Fetch-Execute cycle
A machine code program is made up of machine code instructions which are
fetched from main memory, one at a time, and executed in the processor/CPU.

A processor executes each machine code instruction by breaking its execution
into a three-step sequence with the execution synchronised by the system clock
and controlled by the control unit.

This sequence of three steps is called the Fetch-Execute cycle or instruction
cycle. This cycle is repeated continuously until the CPU is instructed to halt or
the last machine code instruction is reached and executed.

The first step is a fetch operation, the second a decode operation and the third
step is execution.

These steps are as follows:

(Fetch phase)

The next instruction to be executed is fetched to the CPU from main
memory

(Decode phase)

The instruction is decoded in order that the CPU knows what operation to
carry out.

(Execute phase)

The instruction is executed, i.e. carried out. This may include reading/
writing from/to main memory.

In this chapter you have covered:

 ■ The Fetch-Execute cycle.

Learning objectives:

 ■ Understand and explain the
Fetch-Execute cycle.

4 Computer systems
4 Computer systems

Key term

Fetch-Execute cycle:
A processor executes each
machine code instruction by
breaking its execution into a
three-step sequence with the
execution synchronised by the
system clock and controlled by
the control unit.
The three steps are:
1. Fetch
2. Decode
3. Execute.

Question
Processor (CPU) and main memory are two essential components of a computer system. Explain, with
reference to both processor and main memory, how a computer executes a machine code program.

1

Task
Run and observe the Fetch-Execute cycle at
http://www.hartismere.com/20398/CPU-Fetch-Decode-Execute-Animation
Describe how the machine code program is executed.

1

Institution licence - St Martins School Essex

http://www.hartismere.com/20398/CPU-Fetch-Decode-Execute-Animation

251

 ■ 4.5.5 Systems architecture

Different types of memory, what they are used for and why they
are required
RAM and ROM - see page 236.
Cache memory - see Page 244.
Register - see page 238.
Differences between main memory and secondary storage
Main memory is directly accessible by the processor (CPU) which is why it
once went by the name immediate access store.
Secondary storage is persistent storage (non-volatile) that is not directly
accessible by the processor. Instead the processor must place a request to read or
write data to secondary storage with an interface controller.
RAM main memory is not persistent storage (volatile). Remove the power and
the contents of RAM are lost. Although some parts of main memory may use
ROM which is persistent, non-volatile storage.
Main memory and secondary storage also differ in capacity and speed of access.
The cost per bit is generally lower for secondary storage than main memory
so affordable secondary storage units can be built with storage capacities far
exceeding what is affordable for main memory.
However, the technology of main memory and its direct accessibility mean it is
much faster to access than secondary storage.
The capacity of main memory is also limited by the fact that it is directly
addressable by the processor and processors are designed with a limited address
range.
The technology of RAM main memory is different from secondary storage
technology.
Differences between RAM and ROM
See page 236.

Why is secondary storage used?
The technology that primary storage (RAM) is built from and which supports
read and write random access to individual words/locations requires a
continuous supply of electrical energy at the correct voltage level in order
to work. Unfortunately, when the supply of electrical energy is removed or
disrupted, the information stored in memory is lost. We say that read/write
main memory is volatile (analogous to liquids which disappear by the process
of evaporation). To retain information and programs after electrical power is
removed requires a different form of storage, one which is non-volatile. There
are three technologies with which such storage is built currently:

1. Magnetic
2. Optical
3. Solid-state.

Learning objectives:

 ■ Understand the different types
of memory within a computer:

• RAM

• ROM

• Cache

• Register

 ■ Know what the different types
of memory are used for and
why they are required.

 ■ Understand the differences
between main memory and
secondary storage

 ■ Understand the differences
between RAM and ROM

 ■ Understand why secondary
storage is required

 ■ Be aware of different types of
secondary storage (solid state,
optical and magnetic)

 ■ Explain the operation of solid
state, optical and magnetic
storage

 ■ Discuss the advantages and
disadvantages of solid state,
optical and magnetic storage

 ■ Explain the term ‘cloud
storage’

 ■ Explain the advantages and
disadvantages of cloud storage
when compared to local storage

 ■ Understand the term
‘embedded system’ and explain
how an embedded system
differs from a non-embedded
system.

4 Computer systems
4 Computer systems

Institution licence - St Martins School Essex

4 Computer systems

252

If we want to retain a program we have created in RAM, or some information we have written to RAM, then we
must transfer both to a non-volatile secondary storage device. The commonest form of read/write secondary storage
is a magnetic hard disk encased in a magnetic hard disk drive (HDD) - Figure 4.5.5.1.

A newer form of read/write secondary store that is now shipping in desktop PCs, laptops and tablets is a solid-state
disk (SSD).
Compact Disc (CD) and Digital Versatile Disc (DVD) storage are optical media that can be used for secondary
storage. There are read only (CD-ROM, DVD-ROM), write once read many times (CD-R, DVD-R) and read/
write versions (CD-RW, DVD-RW) of these.

Magnetic storage
Magnetic storage comes in two forms:

1. Magnetic tape

2. Magnetic disk.

Magnetic disks

IBM developed magnetic disk drives in the late 1950s. The disk drive
allows rapid random (direct) access to large amounts of data.
All disk drives use a thin circular platter made of non-ferrous metal or
plastic which is rotated at up to 10,000 revolutions per minute beneath
a read-write head that moves radially across the surface of the platter.
Figure 4.5.5.1 shows a hard disk drive with the cover removed.
The platter and read-write head can be clearly seen as well as the
photographer’s reflection in the platter.
The platter is coated with an emulsion of iron or cobalt oxide
(or a cobalt-based alloy) particles that act as tiny magnets.
Binary data is recorded by aligning these tiny magnets in
one direction to represent a binary 0 and in the opposite
direction to represent a binary 1. Binary data is recorded in
concentric rings, or tracks, subdivided into sectors that hold a
fixed number of bytes, such as 512. A hard disk can store and
retrieve a large volume of data.

To read data stored on the hard disk, the read-write head
moves to the desired track and waits for the relevant sector to
pass beneath it. When data is transferred from the hard disk
to the computer and vice versa, a whole sector of a track is
read or written each time. A whole sector of a track is often
called a disk block or a block. For this reason, a magnetic

Questions
Why is secondary storage needed?1

Spindle
connected
to motor

Platter

Platter rotation

Read-write
head

Read-write
head radial
movement

Figure 4.5.5.1 Hard disk drive
with cover removed

Track

Platter

Magnetic particle
each encoding a 1 or 0

Part of one
sector
of a track

Disk block
(one sector
of a track)

Read-write
head

Stepper
motor

Sector

N-S
S-N

S-N
N-S

Figure 4.5.5.2 Hard disk platter showing
concentric tracks and sectors

Institution licence - St Martins School Essex

4.5.5 Systems architecture

253

hard disk drive is known as a block-oriented storage device. The smallest unit
of transfer is a block which is typically 512 bytes.
The top and bottom surfaces of a platter may be used to store data.
A block address for a single-platter system is composed of a surface address,
a track address and a sector address. Typically, the surfaces are numbered 0
and 1, the tracks 0 to 7,000 and the sectors 0 to 63. Figure 4.5.5.2 shows a
schematic for one surface of a magnetic hard disk.

Modern hard disks for a PC system are sealed units, called Winchester disks,
containing several platters mounted on a common spindle. The platters are
sealed inside an assembly which allows the disk to operate with minimal risk of
damage from contaminants. The read-write heads are built into the assembly
with one head per surface. The greater the number of platters, the greater the
storage capacity.

Magnetic tape

Figure 4.5.5.3 shows a magnetic tape
cartridge used to store backup data
or archived data. In late 2017 IBM,
using a new magnetic tape prototype,
achieved a storage capacity of 330 TB
of uncompressed data on a palm-sized
cartridge, breaking the world record and
far exceeding any single magnetic hard
drive solution.

The information that needs to be stored doubles every two years, tape storage
offers the most cost-effective solution.
Tape storage is used extensively in today’s modern data centres for backup and
archiving. Numerous studies confirm that the Total Cost of Ownership (TCO)
for tape is much lower than disk when it comes to backup and data archiving
applications.

Background
Disk buffer:
Executing programs do not
write directly to magnetic hard
disks. Instead, they write to an
area of main memory (RAM)
called a disk buffer. Before a
program can write to a file,
it has first to open the file, if
it exists, or create the file if it
doesn’t. This open/create action
creates a disk buffer in main
memory (RAM) which is then
associated with the file. The
program writes to this buffer.
When the buffer becomes
full or the program closes the
corresponding file, the operating
system writes the buffer to disk.
The size of the buffer matches
the size of a disk block or a
multiple of this.
To read a file it must first be
opened. This creates a disk
buffer which receives a block
at a time belonging to the file.
The program that opened the
file then reads from this buffer.
When the buffer becomes
empty, the operating system
transfers the next disk block
belonging to the file into this
buffer.

Did you know?
In 2015, the fastest rotation
speeds of consumer disk drives
was 10,000 revolutions per
minute.

Key concept
Track:
One of the concentric rings on a
platter of a hard disk.
Sector:
A subdivision of a track.
Disk block:
The smallest unit of transfer
between a computer and a disk.
A disk block is one sector of a
track.

Figure 4.5.5.3 Magnetic tape
data cartridge

Questions
Explain the principle of operation of a magnetic disk drive.2

Did you know?
Backing up data means taking a copy of data and storing it somewhere safe, e.g. in
a fireproof safe or off-site. Archiving data means removing it from the online storage
medium, usually to free up space. Data qualifies for archiving if it has not been
accessed recently and will not be accessed regularly in the future. Programs and data
may be backed up and archived.

IBM obtained the technology for making magnetic disks from Manchester University
where a one kilobyte magnetic disk had been made on a one metre-wide platter.

Institution licence - St Martins School Essex

4 Computer systems

254

Optical storage

An optical disc is a flat, usually circular disc which encodes binary data
(bits) in a special reflective layer. In one form of optical disc, binary data
is encoded in the form of pits (binary value of 0 due to lack of reflection
when read) and lands (binary value of 1 due to a reflection when read) on
a reflective material, usually metallic, on one of its flat surfaces as shown
in Figure 4.5.5.4.

CD-ROM
The success of compact discs (CDs) for storing audio led to a new format,
CD Read-Only Memory (CD-ROM). Introduced early in 1985, this
format was initially used to publish encyclopedias, reference works,
professional directories and other large databases. CD-ROMs were
ideal for this because they had (for the time) a high storage capacity of
600–700 million bytes, offered fast data access and were portable, rugged
and read-only. Today, CD-ROMs are also used for software distribution.

The data is written on the discs using disc-mastering machinery that
impresses pits (physical depressions) into a continuous spiral track. The
silvery data surface contains pits in a single track 3.5 miles (5.6 km) long.
The disc spins at 200-500 revolutions per minute depending on which
part of the track is being read.

A data bit is read by focusing a laser beam onto a point in the reflective
metal layer where the pits are impressed (Figure 4.5.5.4).

More laser light is reflected from the unpitted surface than from
the pitted surface. This is detected by a photodiode that outputs an
equivalent electrical signal. After some conditioning, the result is a digital
signal representing a single data bit. Without going into the fine detail,
the amount of reflection is used to encode a data bit as 0 or 1.

Key fact
Optical disc:
An optical disc is a flat, usually circular
disc which encodes binary data (bits) in
a special reflective layer. In one form of
optical disc, binary data is encoded in
the form of pits and lands on a reflective
material, usually metallic, on one of its
flat surfaces. The pits reflect less light
than the lands and this is used to encode
0s and 1s.

Did you know?
CD-R:
Write Once, Read Many (WORM) times
optical disc.
CD-R can record about 650 - 900 MiB
of data.
CD-RW:
CD-ReWritable disc that can be read and
written to over and over again.
DVD-ROM:
Digital versatile disc or digital video disc
(DVD) is an optical standard offering
much greater storage capacity than CDs.
Storage capacity of a single-layer DVD-
ROM is 4.3 GiB (4.7 GB).
DVD-R:
DVD-R is a WORM format similar to
CD-R.
DVD-RW:
The DVD-RW format provides a
rewritable optical disc with a typical
capacity of 4.3 GiB (4.7 GB).
DVD+RW:
A competing rewritable format to
DVR-RW.
DVD-RAM:
DVD-RAM is a rewritable format
that has built-in error control and a
defect management system, so it is
considered to be better than the other
DVD technologies for tasks such as data
storage, backup and archiving. The on-
disc structure of DVD-RAM is closely
related to hard disk technology, as it
stores data in concentric tracks.
Blu-ray disc:
A Blu-ray disc (BD) is a high-density
optical disc capable of storing 23.3
GiB (25 GB) in a single-layer which is
considerably more than a DVD can store.

Laser beam

Label Protective
layer

Polycarbonate
disc

Re�ective
metal layer

Magni�ed view
showing pits in
re�ective metal

layer

1.2 mm
thick

Figure 4.5.5.4 CD-ROM cross-section through its layers

Institution licence - St Martins School Essex

4.5.5 Systems architecture

255

Solid state storage
Solid state storage relies on a technology called flash memory derived from EEPROM
technology (electrically eraseable ROM).
Flash memory falls into four categories:

1. SD (used in cameras), MMC (used in video cameras), compact flash (used
in video cameras) and Sony® memory stick (used in Sony cameras and other
products) (Figure 4.5.5.5)

2. USB flash/stick/pen/thumb drive (Figures 4.5.5.6 and 4.5.5.7)
3. Embedded flash (eMMC, UFS)
4. Flash-based solid state drives (SSDs) designed to replace conventional hard

drives (Figure 4.5.5.8).
Flash is a type of non-volatile semiconductor memory designed to provide individual
memory cells in an addressable matrix similar to DRAM memory (see Chapter 4.5.2).
The fundamental flash memory cell is based on the floating-gate MOSFET transistor.
A cell stores a bit as a level of electrical charge.
Unlike a DRAM cell, this charge may be stored in a flash storage cell for up to 100
years, it is claimed, and without the need to be connected to any form of electrical
power - hence the label, non-volatile - to retain data.
Unfortunately flash memory cells have a limitation that is not present in
SRAM or DRAM memory cells (see Chapter 4.5.2): flash memory cells may
be written to and/or erased only a certain number of times. This may be as
little as 1000 write/erase cycles but it can be up to 100,000.
Writing data to flash memory is done in two stages. The first stage erases the
memory cells involved which consists of setting them all to 1. The second
stage consist of changing those cells that need to be 0.
In general, the individual cells in flash devices all work the same way.
The difference between flash devices depends to some extent on how these cells are
arranged and interconnected on the silicon semiconductor chip from which the flash storage is created.

Figure 4.5.5.8 Solid-state disk drive

Figure 4.5.5.7 USB thumb drive interior

NAND flash

Flash controller

Figure 4.5.5.6 USB thumb drive

© D-Kuru/
Wikimedia
Commons

Figure 4.5.5.5
Flash memory cards

(© Ralf Roletschek roletschek.at)

Compact flash

SD
memory

 card

Institution licence - St Martins School Essex

http://roletschek.at

4 Computer systems

256

Did you know?
There are currently two very different architectures:

• NOR flash: May be written and read down to a single memory word, which can be anywhere from 8 bits to
64 bits.
It is faster to read but slower to write and erase than NAND flash.
It can support in-place execution of code and is commonly used for storing firmware (software that is
retained when the power is removed) in embedded devices.

• NAND flash: has to be accessed in larger units called pages of 512 or 4096 bytes.
Pages are combined into blocks of typically 16 KB or more.
NAND flash is read and written in pages, but erased only in blocks. Fresh pages for writing to can only be
obtained from an erased block.
The smallest unit that may be read or written to in a single operation is a page.
However, to change a page a copy is altered, and then written to a page that has not been written to since
erasure (all bits will be set to 1 after erasure).
This means that NAND flash does not allow data to be rewritten "in place" which would be necessary for
operation as RAM.
Therefore, in-place execution of code is generally not possible due to lack of support for rapid random access
to the flash array of cells.
Instead, NAND flash was designed to act as mass storage (secondary storage) rather than non-volatile RAM.
Cameras use NAND flash memory in the form of SD cards. Cameras use the fact that NAND flash is faster
to write but is slower to read which is perfectly acceptable when storing photographic images for processing
later in image processing software such as Adobe® Photoshop.

eMMC

This type of flash storage is soldered to a circuit board for a smartphone
or a tablet and therefore is not removable storage. It goes under the name
embedded MMC or eMMC where MMC is short for Multi-Media
Controller which refers to a package consisting of flash memory and a
flash memory controller. Almost all mobile phones and tablets use this
form of flash for main storage. The latest version of the eMMC standard
(released February 2015) has speeds rivalling discrete SATA-based Solid
State Drives (400 MB/s). Figure 4.5.5.9 shows eMMC soldered to the
Tiva microcontroller board.

Flash-based Solid-state disk (SSD)
The solid-state disk (SSD) in a solid-state disk drive (Figure 4.5.5.8) is a form of flash memory which operates by
trapping electrons in a wafer of semiconducting material. These electrons and their electric charge remain trapped
even when electric power is removed, i.e. SSD is non-volatile storage. Binary 0 is represented by trapped electrons
and binary 1 by absence of trapped electrons.
The sites (floating gate transistors) where these electrons are trapped are organized in a grid. The entire grid layout is
referred to as a block, while the individual rows that make up the grid are called a page.

Common page sizes are 2KiB, 4KiB, 8KiB, or 16KiB, with 128 to 256 pages per block. Block sizes are typically
between 256KiB and 4MiB. For example, the Samsung™ SSD 840 EVO has blocks of size 2MiB, and each block
contains 256 pages of 8 KiB each. The Samsung SSD 840 EVO comprises 8 NAND flash chips, each of capacity 64
GiB. Each Samsung flash chip contains 32 blocks.

Figure 4.5.5.9 eMMC 512KB

eMMC flash memoryeMMC flash memory

Institution licence - St Martins School Essex

4.5.5 Systems architecture

257

Unlike magnetic disk drives, solid-state drives contain no moving parts or spinning disks. The absence of moving
parts means that solid state disk drives can operate at speeds far above those of a typical hard disk drive.
Access time for a typical hard drive is on average 10-15 milliseconds whereas access time for an SSD drive is 25-100
microseconds (access time for RAM is typically 40 -100 nanoseconds).
The technology used is NAND flash memory.
A solid-state disk is a block-oriented storage device which has to erase a block first in order to rewrite it because
unlike magnetic hard disk drives, NAND flash memory can’t overwrite existing data. Erasing a block in the SDD
means “untrapping” electrons.
The solid-state disk drive requires an onboard controller which consists of an embedded microprocessor with RAM
buffer to perform reading and writing to the solid state disk (Figure 4.5.5.10). The controller is a very important
factor in determining the speed of the SSD drive.

To alter the contents of a particular memory location of SSD storage, an entire page must be constructed containing
the new information and written to a page which is in the "free" state, i.e. has not been used since erasure.
When data is changed, the content of the page is copied into an internal register, the data is updated, and the new
version is stored in a "free" page, an operation called "read-modify-write".
SSD secondary storage is increasingly being used in laptops, tablets and is an option now for desktop PCs. The
attraction is lower power consumption and faster booting of the operating system.
Pages cannot be overwritten, and once they become stale, i.e. used but data stored is no longer needed, the only way
to make them free again is to erase them. However, it is not possible to erase individual pages. It is only possible to
erase whole blocks at once. Erasure is triggered automatically by a garbage collection process in the SSD controller
when it needs to reclaim stale pages to make free space.

Questions
Explain how data is written to flash memory.

In what devices or systems are the following flash memories used:
(a) eMMC? (b) Compact flash? (c) SSD?

3

4

Figure 4.5.5.10 SSD drive printed
circuit board (PCB) showing the
controller and the NAND flash
memory chips

NAND
Flash

 Memory

SSD
PCB

SSD
Controller

SATA
Interface

Image reproduced with
kind permission of
StorageReview.com

Institution licence - St Martins School Essex

4 Computer systems

258

Advantages and disadvantages of solid state, optical and magnetic storage
A flash memory device is solid-state, i.e. has no moving parts, it is therefore less
affected by shock than a spinning magnetic disk.
Flash memory is ideal as non-volatile RAM (NVRAM) in tablets and mobile
phones and can also store the devices’ operating system including the file system.
Wear-level management in flash NVRAM is now very good and operating
systems used in most tablets and mobile phones are not a Windows-based design
which would soon wear out the flash memory by frequent writing of registry
settings to NVRAM (every second).
SSDs consume less power than magnetic disk drives but the latter offers a more cost effective storage solution. In
2017 SSDs are more expensive than hard drives in terms of pound sterling per gigabyte.
A PC or Mac with an SSD boots faster, launches and runs applications faster, and transfers files faster than magnetic
hard disk.
There is a limit to how small magnetic hard drives can be manufactured because they rely on spinning platters.
SSDs have no such limitation, so they can be made to fit a form factor much smaller than the smallest magnetic
hard disk form factor which is currently at 1.8 inches.
Even the quietest hard drive emits noise when it is in use from the drive spinning or the read arm moving back and
forth. Faster hard drives will make more noise than those that are slower. SSDs make virtually no noise at all, since
they are non-mechanical.
Both flash and optical storage are more portable than magnetic disk drives. The former are removable media
whereas the latter are not meant to be removed from a computer system.
Both magnetic disk and SSD storage have been optimised for high speed access, DVDs and CDs are fast enough to
play movies and music but are slower than magnetic disks and SSDs.
Optical media and their drives are considerably cheaper than magnetic disk drives and SSDs (but not when
compared per byte).
Magnetic disks and SSDs have storage capacities much greater than current optical media. Blu-ray optical disks can
store up to 50 billion bytes (25-50 GB) whereas magnetic disk drives and SSDs currently can store trillions of bytes
(TB). In 2017 Seagate® announced a 60 TB SSD.
Optical media can suffer damage from surface scratches which can render them useless. Magnetic disks and flash
devices have greater protection because they are located inside protective sealed units. However, unlike optical and
solid state media, magnetic disks can be damaged by strong magnetic fields.

Information
SSD vs other flash-based
devices:
SSDs are much faster than any
of the other flash-based portable
drives, e.g. USB thumb drive.

Questions
An SSD device is a type of solid state storage.
State two advantages of solid state storage compared to magnetic storage.

Why are optical media not suitable as general purpose secondary storage but instead are used for backing up
data and distributing software?

Some desktop computers have both magnetic hard drives and solid state drives.
What would each be used for and why?

Describe how data is stored on, and read from
(a) a magnetic hard disk (b) a CD-ROM.

5

6

7

8

Institution licence - St Martins School Essex

4.5.5 Systems architecture

259

Cloud storage
Figure 4.5.5.11 shows the interior of one of
Google’s data centres which provides remote
storage for multiple users in racks of commodity
servers with hard disks or solid state disks
attached.
Users access this remote storage over the Internet
through a web-based interface.
An example of a web-based interface is shown in
Figure 4.5.5.12 for CertainSafe®’s cloud storage
service.
Users pay only for the storage capacity used
(beyond a certain capacity in the case of some
providers, e.g. after 2GB).

Cloud storage is a storage service in
which data is stored on remote servers
accessed from the Internet, or "cloud", and
maintained, operated and managed by a
cloud storage service provider on storage
servers that are built on virtualisation
techniques (Figure 4.5.5.11 shows some
of Google’s server racks in a data centre).
Cloud storage is scalable on demand
according to users’ needs and made possible
by virtualisation.

In virtualisation a single physical computer
is "broken" into smaller pieces, with each
one able to act like a computer of its own,
a virtual computer. Cloud computing
enabled the building of large clusters of physical
computers, which could then be leased out as
smaller virtual ones by the hour.

Virtualisation enables storage hardware to
appear as a single unit of local storage belonging
to one user or organisation when in fact the
storage hardware may be located across several
servers in different server racks as shown in
Figure 4.5.5.13. These servers and their storage
units store data belonging to many users and
organisations without the latter being aware that
this is happening.

Figure 4.5.5.11 Racks of commodity servers with storage at
one of Google’s data centres (image Google/Connie Zhou)

Figure 4.4.5.12 CertainSafe®’s Digital Safety Deposit Box
web interface

Block 1

Block 3

Block 2’

Block 1’’

Block 3’

Block 1’

Block 2’’

Block 2

Block 3’’

Rack 1 Rack 2

Server +
Disk Drive

Figure 4.5.5.13 The data blocks of a user’s file may be spread
and replicated three times over several hard disks or SSDs in

several servers in different racks

Institution licence - St Martins School Essex

4 Computer systems

260

Each user gets a container to store their data. The container has a globally unique name and a few other options
which the user can set such as the type of disk required (SSD or magnetic) and where this disk should live (ie,
Europe or the US). The big difference is that this "disk" is extraordinarily large in that there’s no limit to how
many bytes can end up in a container. The only limit is that each file in the container can be up to 5 Terabytes. The
container itself is replicated and spread across many physical disks in order to maintain high levels of durability and
availability - see Figure 4.5.5.13.
Some examples of cloud storage services available to the general public are Microsoft® OneDrive, Google® Drive,
Apple® iCloud, Dropbox, and CertainSafe Digital Safety Deposit Box.
Advantages and disadvantages of cloud storage compared with local storage
Advantages of cloud storage compared with local storage

1. Files stored in the cloud and accessible from the Internet:
(a) May be accessed from anywhere, e.g. from smartphone on the train, from tablet in your hotel room. With

local storage only, a file on a system at work or school cannot be accessed away from work/school without
taking a copy home. With no local storage a file may still be accessed, e.g. from smartphone with Internet
access.

(b) May be accessed from any computer with an Internet connection, e.g. smartphone, tablet, laptop,
desktop.

(c) Can be shared and worked on by more than one user making collaboration possible. The cloud service
manages the collaboration by queuing edits so that none are lost or overwritten.

(d) Avoids working with separate local copies instead users can jointly work on the cloud copy of the file,
e.g. a document, performing edits, adding comments etc, which all can see.

(e) Avoids having multiple out-of-sync copies scattered across local storage on different systems which on
merging can result in the loss of vital edits/changes if overwritten.

(f) Don’t have to rely on carrying files around on USB thumb drives/memory sticks which could
get lost or stolen easily or have to rely on email to send files to yourself. Instead, users undergo an
authentication process to secure access to the files in the cloud.

2. Files stored in the cloud:
(a) As a part of their support for collaboration some cloud providers also offer office productivity tools such

as word processing as part of the deal which otherwise would have to be paid for separately if processing is
done with files in local storage.

(b) If files are downloaded from the cloud to be worked on locally and offline (i.e. not connected to the
Internet), cloud storage services usually provide a mechanism by which the cloud copy can be
synchronised with the updated local copy when it comes back online. This relieves users from managing
the syncing of multiple local copies of the same file in a way that preserves all the edits/changes.

(c) Relieves the user of backup management. The cloud service provider usually offers this as part of the
service.

(d) Users of cloud storage services also do not have to worry about local hard disk crashes/damage due to
natural disasters such as fire or flooding because their files are now stored in redundant storage arrays in
the cloud, the maintenance of these being the responsibility of the cloud service provider.

(e) Users of cloud storage services do not have to worry about loss of data and loss of privacy from someone
breaking into their home, stealing their computer and then examining the contents of the local storage
unit.

(f) Cloud storage can be an exceptionally good fit for situations where you don’t know (or can’t know)
what your storage will look like, either many years in the future, or tomorrow. Anytime a situation
arises where more storage is needed the elastic nature of cloud storage will meet this need quickly and more
cheaply than purchasing more local storage capacity with attendant configuration issues.

Institution licence - St Martins School Essex

4.5.5 Systems architecture

261

Disadvantages of cloud storage compared with local storage

1. When you use cloud storage you are relying on storage in a data centre which doesn’t belong to you unlike
local storage. This means giving up some control over your assets (such as data or program source code)
in exchange for other benefits (such as flexibility or lower costs).
You can expect your data to be stored in encrypted form in the Cloud. In one cloud storage scheme, the
cloud storage provider keeps a copy of the encryption key so when you ask for your data, it can be returned
to you decrypted. However, this also means if the cloud storage provider were to receive a court order, they
do have the technical ability to comply with it and decrypt your data without your consent.

2. Cloud service providers are high profile and subject to concerted and sophisticated attacks from
hackers. Several of the well-known providers have suffered security breaches. Dropbox had to fix a security
hole recently, and got breached a few years ago. Google Drive, OneDrive, and Dropbox accounts are
vulnerable to man-in-the-middle attacks.

3. Most cloud storage providers charge a subscription for storing users’ data with only a small amount of
storage being subscription-free. This is an ongoing cost which must be compared with the one-off cost of
local storage. Other factors need to be considered such as the cost of Internet access and the speed of access.

4. Without Internet access you will not be able to access your files in cloud storage.

Embedded system

We can think of a laptop as a computer which can be used to do all sorts of things users want to do from surfing the
Web to word processing essays. For this reason a laptop is considered a general purpose computer system. But this is
not the only type of computer system.

Another type is an embedded computer system.
Loosely defined, an embedded computer system is any device that includes a programmable computer but
is not itself intended to be a general purpose computer. For example, a clock built from a microprocessor is an
embedded computing system as is a washing machine with a microprocessor-controlled washing cycle.

Many of today’s cars operate an embedded computer system with over 100 million lines of code running on 40 to
100 microprocessors monitoring whether seat belts are in use to managing and controlling the running of the car’s
engine.

Another example of an embedded system is a portable music player. The cheapest portable music players are
essentially USB thumb drives with a two-line LCD display, a headphone jack and a couple of buttons. To reduce
cost, the audio codecs and UI manager on such devices often run in the flash controller microprocessor alongside
the flash controller software. Music is saved to flash memory so that it is retained when the portable music player
is switched off. USB thumb drives need only about 512 bytes of volatile RAM for buffering a page to be written to
flash memory. Therefore, a portable music player will have much more non-volatile memory than volatile memory.
The programs to decode and play the stored music, and music data are stored in and accessed by the processor from
flash memory - Figure 4.5.5.14.

Questions
What is cloud storage?

Discuss the advantages and disadvantages of cloud storage.

9

10

Institution licence - St Martins School Essex

4 Computer systems

262

Characteristics of embedded systems

 An embedded system has a dedicated purpose, has a limited or non-existent user interface, and is designed to
operate completely or largely autonomously within other machinery, e.g. an engine management system. They
also have limited memory capacity.
Operating systems for embedded systems are designed to work with the constraints of limited memory size and
limited processor performance. In portable embedded systems, the operating system must also take account of
limited battery life.
Characteristics of non-embedded systems

Non-embedded systems do not suffer the constraints of embedded systems. They form the bedrock of general
purpose computers and as such have operating systems which are much more complex and powerful than
embedded operating systems. They will have more volatile RAM secondary storage, more powerful processors
(CPUs), probably multicore. They are also likely to have separate graphics processors (GPUs) and support to
plug expansion boards such as graphics cards into the motherboard. They will have a user interface, usually both
graphical and command line (text-based). They will support a wide range of peripherals from mice and keyboards
to printers, scanners and DVD players.

In this chapter you have covered:
 ■ The different types of memory within a computer: RAM; ROM; Cache; Register
 ■ What the different types of memory are used for and why they are required
 ■ The differences between main memory and secondary storage
 ■ The differences between RAM and ROM
 ■ Why secondary storage is required
 ■ That there are different types of secondary storage (solid state, optical and magnetic)
 ■ The operation of solid state, optical and magnetic storage
 ■ The advantages and disadvantages of solid state, optical and magnetic storage
 ■ The term ‘cloud storage’
 ■ The advantages and disadvantages of cloud storage when compared to local storage
 ■ The term ‘embedded system’ and how an embedded system differs from a non-embedded system.

Questions

What is meant by an embedded system?

Explain how an embedded system differs from a non-embedded system.

Give one example of an embedded system and one example of a non-embedded system.

Embedded systems normally have less volatile RAM in main memory and more non-volatile RAM or
ROM than non-embedded systems. Explain why?

11

12

13

14

Processor System bus

Volatile RAM

Non-volatile RAM

SRAM

Flash
Memory

Figure 4.5.5.14 Portable music player

Institution licence - St Martins School Essex

263

 ■ 5a Computer networks

What is a computer network?
A computer network is a collection of connected
computers.
Figure 5.1 shows three computers, labelled Host
A, Host B and Host C, connected together via a
switch and cabling. The switch could be an Ethernet switch such as the one
shown in Figure 5.3 operating as shown in Figure 5.4.

The connection between computers can be done with cabling, in which case
the connection is said to be wired, or with radio waves, in which case the
connection is said to be wireless.
Computers on a network are called hosts or nodes.

Advantages of networking
Computers are connected together in a network so that resources such as a
printer or a file server or a connection to the Internet may be shared amongst
computers in the network. Communication between computers is also
improved which means that updates and new software may be installed from
a centrally managed server. The activities of computer users may be also be
monitored centrally by observing network traffic. Users benefit because their
work may be backed-up and managed centrally, and users will be able to store
and access their files centrally from any computer.

Learning objectives:
 ■ Define what a computer
network is

 ■ Discuss the advantages and
disadvantages of computer
networks

 ■ Describe the main types of
computer network including:
• Personal Area Network

(PAN)
• Local Area Network (LAN)
• Wide Area Network

(WAN)
 ■ Understand that networks can
be wired or wireless

 ■ Discuss the advantages and
disadvantages of wireless
networks as opposed to wired
networks

 ■ Describe the following
common LAN topologies:

• star
• bus

 ■ Define the term network
protocol.

5 Fundamentals of computer networks
5 Fundamentals of computer networks

Key term

Computer network:
A computer network is a
collection of connected
computers.

Questions
What is a computer network? 1

Host A

Cable Switch

Host B Host C
Figure 5.1 Wired computer network

Internet

Router

File server

Print
server

Printer

Host B Host C

Host A

Switch

Figure 5.2 Network
which enables sharing of
resources

Backbone

Switch

File
server

Host

B

Print
server

Router

Host

C

Host

A

Figure 5.4 Internal operation
of switch connects two nodes
together temporarily so that they
can communicate with each other.

Figure 5.3 Ethernet switch
with exposed CAT 5 cable
showing four wires, two per
circuit (one outgoing, one
incoming)

Cable

Switch

Institution licence - St Martins School Essex

5 Fundamentals of computer networks

264

Disadvantages of networking

Local area networks (LANs) share data, processing and communication. Therefore they are at risk of the following:

1. As the geographical area spanned by a LAN increases, say from a single office to a building and then
a site, so does the chance of interception and leakage of information especially if the network is
wireless.

2. An unauthorised user gaining access to one computer may then have access to the whole network
including sensitive and confidential information stored on a file server.

3. A virus downloaded on one computer may then go on to infect other LAN-connected computers.
4. A single point of failure, e.g.

a. central switch failure may bring down the operation of the whole network denying all users
access to their data stored on a network file server.

b. failure of a domain server used to authenticate users will prevent users from logging in and
being able to use network resources.

c. file server failure will mean that users’ files will become inaccessible.

The main types of computer network

Personal Area Network (PAN)

A personal area network (PAN)
is a computer network organized
around an individual person, and
that’s set up for personal use only. A
PAN typically involves a computer,
mobile phone, tablet and/or some
other personal device like bluetooth
headphones. Figure 5.5 shows
an example of PANs in use at an
airport.

Personal area networks can be
wireless (Bluetooth, ZigBee,
Wireless USB, IrDA, an infrared
connection) or constructed with
cables (wired PAN using USB or
FireWire). Wireless PANs are called
WPANs.

Figure 5.5 Use of PANs at an airport - for PDA read tablet computer

Questions
Give three examples of the advantages of connecting computers in a network.2

Questions
Give three examples of the disadvantages of networking.3

Information
PAN - Only Bluetooth
needs to be considered.

Institution licence - St Martins School Essex

5a Computer networks

265

The reason PANs are classified apart from other network types like LANs,
WLANs, and WANs (see later in chapter for a description of these network
types) is because they transmit information between devices that are nearby.

For example, a Bluetooth enabled keyboard connects to a nearby tablet which
itself may control a nearby smart light bulb.

A PAN might also consist of small, wearable or embedded devices that can
communicate upon nearby contact with other wireless devices.

The reach of a PAN varies from a few centimetres to several metres depending
on the technology used.

Although PANs are personal, by definition, they can still access the Internet by
connecting to a LAN which has access to the Internet.

Local Area Network (LAN)

Local area networks (LANs) emerged in the early 1970s when companies
realised that desktop computers could share peripherals, such as printers, and
could share data, if all were interconnected.
The interconnections became the local area network.
A computer that is not interconnected is known as a stand-alone computer.
A stand-alone computer needs its own printer, hard disk storage, and local
installation of application software whereas LAN-connected computers can
share printers, hard disk storage and download application software from an
application server.
Figure 5.2 shows an example of computers sharing the following resources via
a LAN: a printer and print server, a file server and a connection (router) to the
Internet.
LANs cover a relatively small geographic area such as a single building or a
school site. The close proximity of computers to each other in a LAN enables
communication links to be used that have higher speeds and lower error rates
than in wide area networks (WANs).
LAN ownership

LANs are usually owned and controlled/managed by a single person if it is a
home network, or an organisation if it is, for example, a school network.

Key term

Local Area Network (LAN):
A Local Area network consists
of linked computers in close
proximity, e.g. a single building
or site occupying a relatively
small geographic area.

Key term

Pan Area Network (PAN):
A personal area network (PAN)
is a computer network organized
around an individual person,
and that’s set up for personal
use only. A PAN typically
involves a computer, mobile
phone, tablet and/or some other
personal device like bluetooth
headphones.
A PAN transmits information
between devices that are nearby,
e.g. a few centimetres or metres
away. Questions

What is a Personal Area Network (PAN)?

Give two examples of the use of a PAN.

4

5

Questions
What is a Local Area Network (LAN)?6

Information
Difference between a wireless
PAN and a wireless LAN:
Conceptually, the difference
between a PAN and a wireless
LAN is that a PAN tends to be
centred around one person while
a wireless LAN is a local area
network (LAN) that is connected
without wires and which serves
multiple users.
Some other examples of wireless
PAN, or WPAN, devices
include mobile phone headsets,
wireless mice, printers, bar code
scanners and game consoles.

Institution licence - St Martins School Essex

5 Fundamentals of computer networks

266

Wide Area Network (WAN)

Wide Area Networks (WANs) were invented to solve the problem of connecting a LAN to a distant computer or to
a remote LAN - Figure 5.6.
LANs are perfect for sharing
resources within a building
or over a single site, but they
cannot be used to connect
distant sites.
Wide Area Networks serve this
need.
Expressed simply, a wide area
network is a set of connections
between geographically remote
local area networks.

The Internet WAN
When two LANs are interconnected by a WAN so that computers or nodes
on one network are able to communicate with computers or nodes on the
other network, and vice versa, the two LANs are said to be internetworked
or to form an internet (note the use of lowercase “i”). The publicly accessible
internet known as the Internet is the largest example of a WAN.

WAN ownership
A WAN has to operate at high-speed, with high bandwidth connections and high-performance routers connecting
together LANs.
This connection infrastructure is sometimes referred to as the backbone of the WAN.

WAN backbones are expensive to install, operate and maintain.

For this reason WANs are often under collective or distributed ownership.

For example in the UK, Janet (Joint Academic NETwork) is the name of a high-speed network for the UK’s
research and education community. It is owned by JISC, a not-for-profit company that was originally set up and
funded directly by the British government. This WAN connects universities, Further Education (FE) colleges and
research establishments in the UK from Lands End to John O’Groats and everywhere in between.
It serves some 18 million users and has over 5,000 km of optical fibre capable of running at either 100 Gbit/s or 2
Tbit/s.

Each university, FE or research establishment owns and operates its own LANs but all rely on the JISC-owned
backbone to interconnect these LANs. They pay money to JISC for the privilege of being connected to Janet.

LAN

Router Switch

LAN

Router Switch

LAN

Switch Router

LAN

Switch Router

Figure 5.6 A WAN linking computers in geographically remote locations

Link

Key fact
Internet:
The Internet is the largest
example of a WAN.

Key term

Wide Area Network (WAN):
A set of links that connect
geographically remote
computers and local area
networks.

Questions
What is a Wide Area Network (WAN)?7

Institution licence - St Martins School Essex

5a Computer networks

267

Who owns the largest WAN in the world, the Internet?
The physical network that carries Internet
traffic between different computer systems
is the Internet backbone system.
It is split into continental and national
backbones - Figure 5.7.
These backbones are owned by a number
of different commercial companies or
state-owned companies (e.g. People’s
Republic of China) but these companies
have restricted control and ownership over
the Internet because it was designed to:

1. Not rely on any form of central
control

2. Use global network policies
determined by independent
public bodies not by companies

3. Rely on the end-to-end principle, i.e. the hosts/nodes at each end of the
communication are given control of their communication.

For the above reasons, we say that ownership of the Internet is distributed.

Wired and wireless networks
Wired networks use different kinds of cabling to carry data depending on speed
and bandwidth requirements. The two main choices of material for the physical
wiring of a wired network are

1. Copper
2. Fibre optic.

Fibre optics refers to technology that transmits data through thin strands of a highly transparent material that
usually is either glass or plastic.
Fibre optic transmission is faster then copper wire and when
travelling over a long distance, fibre optic cables experience
less signal loss than copper cabling.
Wireless networks use radio waves to carry data.
Advantages and disadvantages of wireless networks as
opposed to wired networks
Wireless networks eliminate much of the cost of cabling that occurs with wired networks but may not provide as
much bandwidth as wired networks, i.e. wireless networks could be slower. However, it is usually much easier and
cheaper to add extra devices via Wi-Fi to a wireless network than to cable these devices to a wired network. Also, the
wired option is not always possible because some wireless devices don’t support a wired connection. Wireless devices
are more flexibly relocated because no re-cabling is involved, e.g. can be used outdoors, but depending on location
may suffer from an unreliable signal and therefore disruption to transmissions.
But care has to be taken because now that communication takes place via radio waves, transmissions are much
easier to intercept than is the case with wired networks.
In a wireless network without encryption, it is possible to eavesdrop on traffic intended for other computers.

North
America

University
campus

Home
user

School
network Europe

Global internetwork or the Internet

Central and
South America

Internet
Service

Provider

Far East and
Paci�c

Middle East Africa

International links
or core backbone

Continental and
national backbonesFigure 5.7 The physical

structure of the Internet
Information

There are many organizations,
corporations, governments,
schools, private citizens and
service providers that all own
pieces of the infrastructure, but
there is no one body that owns
it all.
No one actually owns the
Internet, and no single person
or organisation controls the
Internet in its entirety.

Questions
Give three reasons why WANs are often under collective or distributed ownership.8

Questions
Give two reasons why wired networks
might be preferred to wireless networks and
two reasons why wireless networks might be
preferred to wired networks.

9

Institution licence - St Martins School Essex

5 Fundamentals of computer networks

268

Star network topology
In the star network topology, cabling is configured as shown in Figure 5.8 as a
star.

The centre of the star is either a network switch or a central computer.

In a traditional star network, each link from node to central
computer is an independent link. Each link is therefore secure
from eavesdropping by other nodes.

If a link to a node goes down, the other links and nodes are
unaffected. However, if the central computer / central switch goes
down, the whole network will fail.
In a true star-based network, the speed of each link to the central
computer should remain high, because the links are not shared.

Bus network topology
Figure 5.9 shows the layout of a bus network.
Each computer “taps in” to the transmission medium, i.e. the bus.
Bus networks used to be cabled with coaxial cable, a form of copper cable.
Each computer was then physical attached to coaxial cable via taps called
T-piece connectors - Figure 5.10 and Figure 5.11.

A bus is a linear transmission medium.
The same linear behaviour is now achieved with a switch
and CAT 5 cabling as shown in Figure 5.3 and Figure
5.4, at the beginning of this chapter, even though the
wiring to the switch resembles a star network.
The bus transmission medium is a shared medium, only
one computer can send at a time. In the coaxial-cabled
bus network this means that every connected computer is
able to “see” each transmission. A computer then selects
the transmissions it should receive based on the address
information contained in the transmission. In a switch-
cabled network only two computers are ever connected as
a bus, at a time, so only these see their transmission.

Key term
Topology:
In the context of networking,
the shape, layout, configuration
or structure of the connections
that connect devices to the
network.

Central switch
or central computer

Figure 5.8 Star network topology

Bus

Computer

Figure 5.9 Bus network topology

Computer

T-piece connector Linear transmission medium or bus

Computer Computer

Figure 5.10 Bus
network topology

T-piece
connector

Coaxial
cable

Figure 5.11 Bus network using coaxial cable

Computer
Computer
at end of

bus

Institution licence - St Martins School Essex

5a Computer networks

269

When would each topology be used?

The wired bus system in which each computer on a network is connected directly
to the next computer in a linear fashion is now obsolete.
This network topology was originally used because running a single cable past
all the computers in the network was easier and used less wiring than other
topologies.
The network connection would start at the server and end at the last computer in
the network - see Figure 5.9.
The original wired-as-a-bus network used a networking protocol called Ethernet.
Ethernet lives on in the wired-as-a-star network that uses a switch at the centre of
the star configuration.
The switch creates a temporary and short duration linear Ethernet bus
connection/pathway between two network computers (Figure 5.4) that wish
to communicate. At the end of the communication, the connection is broken so that another two computers may
connect temporarily. The temporary linear connection behaves as a bus.
With the wired-as-a-star switch network, each sending client computer (host) is able to use the full bandwidth
of the network when transmitting because no data/packet collisions will occur with other sending computers (a
temporary link is made between sending and receiving computer).
It is also easy to connect new devices and the failure of one client computer will not affect others. Also,
eavesdropping (packet sniffing) is made difficult as the packets are only sent to the intended device.
In the now obsolete coaxial cable wired-as-a-bus networks, packets could be sniffed because the bus cabling was a
shared medium. Also, as the bandwidth was shared by all the computers, performance could be slower then wired-
as-star switched bus networks because data/packet collisions occur. There is a noticeable and significant gain in
performance of wired-as-star switched bus networks over wired-as-a-bus networks.
Coaxial cable bus networks were first replaced by hubs which effectively allowed the network to be wired as a star
but behaviour was equivalent to the shared bandwidth bus medium it replaced. It was only the transition from
Ethernet hubs to Ethernet switches that brought about the improved performance.

Network protocol
A protocol provides agreed signals, codes and rules for data exchange between systems.

A network protocol makes possible communication between processes executing on different hosts whilst hiding the
complexities of the underlying network from these processes. (A process is an instance of a program in execution).

Questions
Describe the network topologies star and bus.10

Information

Ethernet bus and wired-as-a-
star network:
Ethernet lives on in the wired-
as-a-star network that uses
a switch at the centre of the
star configuration. The switch
creates a temporary and short
duration linear Ethernet bus
connection/pathway between
two network computers that
wish to communicate.

Questions
An Ethernet bus network is wired as a star using a switch.
Explain how this wired as a star network topology behaves as a bus network.

State two advantages of the wired-as-a-star Ethernet bus network over the wired-as-a-bus Ethernet bus
network.

11

12

Institution licence - St Martins School Essex

5 Fundamentals of computer networks

270

In this chapter you have covered:

 ■ Defining what a computer network is
 ■ The advantages and disadvantages of computer networks
 ■ The main types of computer network including:

• Personal Area Network (PAN)
• Local Area Network (LAN)

• Wide Area Network (WAN)
 ■ That networks can be wired or wireless
 ■ The advantages and disadvantages of wireless networks as opposed to wired

networks
 ■ The following common LAN topologies:

• star
• bus

 ■ The definition of the term network protocol.

Key term
Network protocol:
A network protocol makes
possible communication
between processes executing on
different hosts whilst hiding the
complexities of the underlying
network from these processes.
A process is an instance of a
program in execution.

Institution licence - St Martins School Essex

271

 ■ 5b Network protocols
What is a network protocol?
All communication needs protocols so it goes smoothly and without errors. A
protocol is a set of agreed signals, codes and rules for data exchange between
systems. A network protocol makes possible communication between processes
executing on different hosts whilst hiding the complexities of the underlying
network from these processes. (A process is an instance of a program in execution).

Common network protocols
Ethernet

A computer communicates on the network through a network interface card or
network adapter. A network adapter plugs into the motherboard of a computer
and into a network cable or it may already be integrated into the motherboard.
Network adapters perform all the functions required to communicate on a
network. They convert data between the form stored in the computer and the
form transmitted or received on the cable (Figure 5.12).

The data is transmitted in packets called frames. The format and size of a frame is defined by the Ethernet bus
protocol, a Local Area Network (LAN) protocol.
Figure 5.13 shows this frame structure. Note that the data part of the frame can be any number of bytes between
46 and 1500, inclusive.

Learning objectives:

 ■ Define the term ‘network
protocol’

 ■ Explain the purpose and use
of common network protocols
including:

• Ethernet

• Wi-Fi

• TCP (Transmission Control
Protocol)

• UDP (User Datagram
Protocol)

• IP (Internet Protocol)

• HTTP (Hypertext Transfer
Protocol)

• HTTPS (Hypertext
Transfer Protocol Secure)

• FTP (File Transfer
Protocol)

• Email protocols:

 � SMTP (Simple Mail
Transfer Protocol)

 � IMAP (Internet
Message Access
Protocol).

5 Fundamentals of computer networks
5 Fundamentals of computer networks

Questions
What is a network protocol?1

Network
adapter

card

Computer
motherboard

Serial data flows from the network
adapter card on to the network

Parallel data flows from the
computer’s motherboard
to the network adapter card

Figure 5.12 Network adapter or network interface card(NIC)

Destination
address DataSource

address
Type CRC

2 bytes 4 bytes6 bytes 46 - 1500 bytes6 bytes
Figure 5.13 Ethernet frame

For error detection

Institution licence - St Martins School Essex

5 Fundamentals of computer networks

272

Ethernet is a family of related protocols. The family supports three different transmission speeds:
• 10 Mbps (standard Ethernet)
• 100 Mbps (fast Ethernet)
• 1000 Mbps (gigabit Ethernet).

It uses 48-bit addresses for both destination (where the frame is going) and source (where it comes from).

Wi-Fi

Wi-Fi was invented to provide a wireless connection
between computing devices and to enable these devices
to connect to the Internet via a bridge between a wireless
LAN (WLAN) and a wired LAN known as an access
point - Figure 5.14.
WiFi or Wi-Fi® is officially called IEEE 802.11, because
of the naming scheme that the IEEE (Institute of
Electrical and Electronic Engineers) uses to name their
standards. The 802 part means a Local Area Network
(LAN), and the .11 part is for wireless. Thus Wi-Fi®
which is a trademark of the Wi-Fi Alliance is a WLAN.
It is a LAN because wireless is short-range.
The Wi-Fi channel through which the Wi-Fi signals
travel is a shared medium, shared between devices on
this channel, e.g. channel 36. For this reason, we say it is
multi-access or a multiple access medium. Access must
be coordinated and controlled. Hence
the need for a Wi-Fi protocol.

Wi-Fi® is a family of protocols, e.g.
802.11a, 802.11b, 802.11g, etc.

Figure 5.15 shows a configuration
screen for setting up a WLAN. The
configuration allows the system to
negotiate the most appropriate Wi-Fi®
protocol for the WLAN.

Access Point

Wireless
LAN

Internet

Router

Fibre/DSL
Modem

Wired Ethernet

Figure 5.14 Wireless LAN
connected via a Wireless
Access Point to a wired
LAN and the Internet

Figure 5.15 Wireless radio frequency options for wireless networks
with identifier educational-computing

Questions
“A computer communicates on a network through a network interface card or network adapter.”
Explain this statement with reference to the bus protocol, Ethernet.

Why is Ethernet referred to as a family of protocols?

2

3

Questions
What is the purpose of a
Wireless LAN (WLAN) and
what is its relationship with
the term Wi-Fi?

4

Institution licence - St Martins School Essex

5b Network protocols

273

TCP (Transmission Control Protocol)

When two people make a land line telephone call, switches are closed in telephone exchanges to create a continuous
end-to-end connection between the telephone handsets used by the two people. This connection is not shared with
anyone else and is held for the duration
of the telephone call. When the call is
finished the connection is broken.
What happens when a person interacts
via a web browser with a web server
to download a web page is completely
different. The web page must travel
through a packet-switched network. This
requires that the web page is first split into
a number of smaller units called packets.
Each packet is labelled with a sequence
number before being dispatched into the
packet-switched network as shown in Figure 5.16.
Packets travelling through the packet-switched network do not
necessarily follow the same path which can result in some packets
arriving at their destination out of sequence.
To illustrate what happens, let’s consider a simple example of sending
the text shown in Table 5.1. It is first split into numbered packets as
shown in Table 5.2.
These are then sent independently of each other through a packet-
switched network arriving at their destination out of order, possibly,
as shown in Table 5.3.
It is software implementing the Transmission Control Protocol
(TCP) which breaks text/long messages into shorter segments which
are numbered before being sent as separate packets known as TCP
segments. Similar software implementing TCP at the destination
then uses the sequence number assigned to each
packet to reassemble them into the correct order.

Let me not to the marriage of true minds

Admit impediments. Love is not love

Which alters when it alteration finds,

Or bends with the remover to remove:

O, no! it is an ever-fixed mark,

That looks on tempests and is never shaken;

It is the star to every wandering bark,

Whose worth’s unknown, although his height be taken.

Love’s not Time’s fool, though rosy lips and cheeks

Within his bending sickle’s compass come;

Love alters not with his brief hours and weeks,

But bears it out even to the edge of doom.

If this be error and upon me prov’d,

I never writ, nor no man ever lov’d.

Table 5.1 Shakespeare’s Sonnet 116

Table 5.2 Shakespeare’s Sonnet 116
split into numbered packets Table 5.3 Shakespeare’s Sonnet 116 received out of sequence

E

E

E E

D C B

B

B

A D C

C

C E BC

A D

D

D

A

A

A

1 3 5

4 6

EDCBA
Re-assembled

message

Original
message
EDCBA

Message
packets

Router node

Network

Computer
Y

Computer
X

2

Figure 5.16 Routing of packets
A, B, C, D and E through a

packet-switched network

Information
Packet switching:
https://www.youtube.com/
watch?v=RhvKm0RdUY0

Institution licence - St Martins School Essex

https://www.youtube.com/watch?v=RhvKm0RdUY0
https://www.youtube.com/watch?v=RhvKm0RdUY0

5 Fundamentals of computer networks

274

The TCP software also provides reliable transport of
packets by detecting and handling errors in packet
transmission.
If the destination’s TCP software receives a packet
containing error(s) it requests the packet to be
sent again. The sender’s TCP software expects the
destination’s TCP software to acknowledge successful
receipt of each packet sent. If an acknowledgement is
not received within a certain time period, the sender
sends the packet again.
To the web browser that requested the web page and
to the web server with that web page, TCP appears
to establish a reliable two-way connection for data flows in either direction between the two end-systems as
shown in Figure 5.17.
This connection appears to both web browser and web server to support a reliable byte-stream communication
channel (pipe).
This connection has to be set up and then at the end of the message transmission, broken down (this process is
called teardown).
In addition, TCP:

• Performs flow control by speed matching sender and receiver
• Provides congestion control when parts of the network are congested (packet acknowledgements

don’t arrive within the allotted time period). TCP will resend packets along a less congested route.

UDP (User Datagram Protocol)

When you post a letter into a Post Office pillar box, you expect the letter to get to the address on the envelope,
eventually, but you have no control over the delivery part of the process only control over the writing and posting
part. The letter may get lost in the post or arrive so damaged (the dog chewed it up) that it goes straight into a bin.
You will just assume that your letter got through. UDP is a bit like this.

UDP, like TCP, breaks a message down into smaller-sized packets which end up being sent through a packet-
switched network to their destination. These packets are called datagrams.
However, unlike TCP, UDP does not establish end-to-end connections between communicating end systems.
Therefore, no check is made by the sender’s UDP software that the packets reach their destination.
Nor does the destination’s UDP software request a resend if an error is detected in a received packet. The
packet is simply discarded.

Also, UDP does not insert sequence numbers.
The packets are expected to arrive as a continuous stream or they are dropped. However, the receiver can signal the
sender to slow down.

byte pipe

connection pipe

Host A
Host B

End-system End-system

Server process
e.g. Web server

Messages Messages

Server
socket

Client
socket

TCP/IP protocol
stack

TCP/IP protocol
stack

Client process
e.g. Web browserApplication

Modules
within

operating
system or
library of
routines

Socket API used by both client
and server processes to send
and receive messages

Figure 5.17 Sending and receiving messages using TCP

Questions
Explain the purpose of TCP (Transmission Control Protocol).

Give one example of network communication which involves the use of TCP.

5

6

Institution licence - St Martins School Essex

5b Network protocols

275

UDP is used because it can offer a very efficient communication transport to
some applications, but it has no inherent reliability.
For example, UDP is an ideal protocol for network applications in which
delay in receiving packets is critical such as gaming, voice and video
communications.
These can cope with some data loss from lost or corrupted received packets
without adversely affecting perceived quality.

IP (Internet Protocol)

In order to understand the Internet Protocol and
IP addressing which is what this protocol is about,
we will first consider another system, the land line
telephone system in the UK, which like IP uses a
uniform addressing scheme of unique addresses to
identify devices.

The map of the UK in Figure 5.18 shows the
approximate location of some telephone exchanges in the network of
exchanges. Figure 5.19 shows the telephone numbers of some land
line telephones connected to local telephone exchanges in Aylesbury
and High Wycombe, Buckinghamshire.

To phone High Wycombe land line number 433014 from Aylesbury
requires that 01494 433014 is dialled where 01494 is the area code
number for High Wycombe telephone exchange.
To phone Aylesbury land line telephone 433014 from High
Wycombe requires that 01296 433014 is dialled where 01296 is the
area code number for Aylesbury telephone exchange.
Figure 5.20 shows a label stuck to the base of a telephone handset.
This label lists the serial number 1633082361 for this phone.
Why are phone numbers used instead of phone serial numbers when dialling?
The answer is that it would be very inconvenient to use phone serial numbers
because every time a household changes its phone for another, the phone number
would have to change if it was based on phone serial number.
It is much easier to manage call routing and telephone directories if the phone
network assigns logical telephone numbers, such as 433014, instead of physical
device serial numbers.
For example, the telephone number 433014 assigned to a phone linked to
Aylesbury’s telephone exchange remains this household’s telephone number no
matter how many times the household changes its phone.

Key principle
End-to-end principle:
The end-to-end principle of
the Internet requires that the
two endpoints, the hosts, are
responsible for establishing,
supervising and maintaining
a connection between two
communicating processes,
one on each host. This is done
by a piece of software in each
host known by the name
Transmission Control Protocol
(TCP).

Figure 5.18
Approximate
location of some
UK telephone
exchanges

01296

412345

467123

422995

455004

455014

411783

487235

433014

Aylesbury Telephone Exchange

01494

412345

467123

422995

455004

455014

411783

487235

433014

High Wycombe Telephone Exchange

Figure 5.19 Example of UK telephone numbering
system

BT6600 Twin
Handset
ITEM CODE 082648
S/N 1633082361

Figure 5.20 Base of telephone handset
showing serial number (S/N)

Questions
Explain the purpose of UDP (User Datagram Protocol).7

Give one example of network communication which involves the use
of UDP.

8

Institution licence - St Martins School Essex

5 Fundamentals of computer networks

276

The UK’s telephone numbering system uses a uniform numbering scheme in which each telephone number (area
code number + local number) is unique, e.g.

• 01494 433014 uniquely identifies a telephone (ignoring extension lines) located in High Wycombe
• 01296 433014 uniquely identifies a telephone (ignoring extension lines) located in Aylesbury.

The end-to-end principle requires that each computer using the Internet should be uniquely identified. Vint Cerf
and Robert Kahn proposed that each computer be labelled with a globally unique address known as an IP address.
Their numbering system, called IPv4, is used today and allows 232 different addresses. All these unique addresses
make up a single logical address space.

At the binary level, an IPv4 address consists of 32 bits (4 bytes).

Cerf and Kahn split an IP address into two parts (Figure 5.21):

• bits that identify the network connected to the Internet
(NetID)

• bits that identify a host (strictly speaking a network interface) connected to the network (HostID).

The thinking behind this was that since the Internet is made up of networks, being able to identify each
network would help routers (equivalent of telephone exchanges)
enormously in the task of routing packets to the correct destination
network.

For example, the network shown in
Figure 5.22 has NetID 10.120.61.
This network is shown as having eight
hosts with HostIDs:

5, 9, 10, 15, 16, 21, 25, 26.

An IP address is usually expressed in
dotted decimal notation, where each
byte of the 32-bit IP address is written
in decimal, separated by a dot.

For example, the IP address of host with HostID 21 in Figure 5.22 is 10.120.61.21 (NetID + HostID)

In binary this is

Every organisation that wishes to send and receive e-mail, or gain access to the Internet, needs at least one globally
unique IP address.
An organisation is typically assigned more than one unique IP address as a block of contiguous addresses.

The NetID part of the block of 32-bit IP addresses in IPv4 is indicated by
expressing it in dotted decimal notation form as follows a.b.c.d/x, where x
indicates the number of bits for the NetID.
For example, 129.12.0.0/16 means that the NetID is the first 16 bits, i.e.
129.12. This happens to be the NetID for the University of Kent.
192.195.42.0/23 means that the NetID is the first 23 bits, i.e.

11000000 11000011 00101010 00000000 = 11000000 11000011 0010101

This leaves 9 bits for hostIDs.

NetID HostID

31 0

Figure 5.21 IPv4 address structure

Key concept
Host:
The end-systems, e.g.
computers, are referred to as
hosts because they host (i.e. run)
application programs such as a
Web browser program, a Web
server program, an email client
program.

10.120.61

21

16

5

10

15

25

9

26

Computer Network

Computer

Figure 5.22 Network with network
ID (NetID) 10.120.61 and eight
hosts with HostIDs 5, 10, 15, etc

00001010 01111000 00111101 00010101
BYTE 1BYTE 2BYTE 3BYTE 4

Key term
IPv4:
Internet numbering system of
unique IP addresses that make
up a single logical address space.
IPv6 will eventually replace
IPv4. IPv6 is also an Internet
numbering system like IPv4 but
it consists of 128 bits whereas
IPv4 has only 32 bits.

Institution licence - St Martins School Essex

5b Network protocols

277

Just like the telephone network, IP protocol software defines an addressing
scheme that is independent of the underlying physical addresses of the hosts. In
computer networks, the physical address is the “serial number” of the host/device’s
network adapter, a 48-bit number called its MAC address embedded within the
adapter. It is a network adapter which enables a device to connect to a network.
The network adapter shown in Figure 5.23 has MAC address 74:D4:35:94:AD:53
expressed in hexadecimal.
Figure 5.24 shows three LANs connected by routers. Routers are used because
it is not practical to connect every host directly to every other
host. Instead a few hosts connect to a router, which connects to
other routers, and so on, to form a network.
A router receives packets from one host or router and uses
the destination IP address that they contain to pass on the
packets, correctly formatted, to another host or router.
In the Internet, data packets flow essentially unaltered with
their source and destination addresses (IP addresses) that of the
endpoint systems (now referred to as end-systems) sending and
receiving the packets, respectively. The Internet is a distributed network of switch
nodes (routers) resembling a ‘fishnet’ as shown in Figure 5.25.

Tasks
Visit https://ipinfo.io/countries/gb to view the range of IP address
allocated to various organisations.
Why do you think that Virgin Media Ltd, Sky UK Ltd have been
allocated 9000000+ and 7000000+ IP addresses, respectively?

Click on the hyperlink https://ipinfo.io/AS5607 for Sky Ltd to view
how Sky’s IP addresses are organised into networks.

What is the IP address of a network computer that you have access to?
To find out go to Start>Run>Cmd>IPConfig<Return key>. on a
Windows machine.

1

2

3

Router

Router

Router

Host

Link

Link

Host Host

Local Area
Network

(LAN)

Local Area
Network

(LAN)

Local Area
Network

(LAN)

Router

Figure 5.24 Connecting three LANs by routers

Endpoint
Y

Endpoint
X

Figure 5.25 Distributed
network of switching nodes

(routers) resembling a
‘fishnet’

Key term

Internet: A network of
computer networks, computers
and devices with computing
capability using globally unique
IP addresses and TCP/IP.

Key term

Packet switching:
Messages to be sent are split
into a number of segments
called packets. The packets
of a message are allowed to
travel along independent paths
through a network of routers.
Routers use a packet’s
destination IP address to route
the packet, taking account of
how congested particular routes
are.
This network resembles a fishnet
of switching nodes called routers
connected by links in a way
that allows multiple pathways
through the network between
endpoints.

74:D4:35:94:AD:53

MAC address

Figure 5.23 Network adapter

Key concept
Uniform addressing scheme:
A uniform addressing scheme
is a logical addressing scheme,
independent of the underlying
physical network. Each address
conforms to a common format
defined by a standard, e.g. IPv4.

On an Apple Mac or Linux machine
use ifconfig from a Terminal window
and look for inet.

Institution licence - St Martins School Essex

https://ipinfo.io/countries/gb
http://ipinfo.io/AS5607

5 Fundamentals of computer networks

278

HTTP (Hypertext Transfer Protocol)

Hypertext Transfer Protocol (HTTP) is a very
simple application-level protocol. In this protocol, a
client computer sends a request message to the server
and the server responds with a response message
(Figure 5.26).
In the example in Figure 5.26 the file index.html has been requested. The response message may contain many
forms of data. The most popular form of data is text formatted using Hypertext Markup Language (HTML).

TCP establishes a connection between the client computer and the server computer so that HTTP has a pathway
for its request and response messages.
The simplest request message is

GET / <Return key pressed>

<Return key pressed>

This gets the default web page, index.html, for the given site.
HTTP finishes with the connection after the response message is sent; the TCP connection is broken unless
specifically requested to stay connected.
A web page returned by an HTTP GET request is a text file containing content to be displayed together with
instructions on how to style and structure this content when displayed.
HTTPS (Hypertext Transfer Protocol Secure)

Hypertext Transfer Protocol over Secure Sockets (HTTPS) is a web protocol
that encrypts and decrypts user page requests as well as the pages that are
returned by the web server. HTTPS uses the Secure Sockets Layer (SSL) beneath
the HTTP application layer. HTTPS uses port 443 instead of port 80 in its
interactions with TCP/IP. Figure 5.27 shows the SSL sublayer which encrypts
the HTTP GET / request before sending it through the TCP connection to the
Web server www.site.co.uk. Both the request and the response are encrypted.
HTTPS has
been used for
a long time for
securing payment
transactions on the
Web but it is now
being more widely
used for general
Web access.

WEB BROWSER

Request
Message

Response
Message

Index.html

WEB SERVER MAGNETIC DISK/
BACKING STORE ON

WEB SERVER

Figure 5.26 HTTP request-response messages

GET /

Secure channel

<html>.......</html>

<html>.......</html>https://www.site.co.uk/

www.site.co.uk/

SERVERCLIENT

Web server

TCP

Internet

Link

Application

Web browser

SSL sublayer

SSL socket

TCP socket

TCP

Internet

Link

Application

SSL sublayer

SSL socket

TCP socket

Figure 5.27 Fetching a Web page using HTTPS

Questions
Explain the purpose of IP addressing in the Internet Protocol.

What device or devices in network communication other than the sending and receiving hosts use IP
addresses?

9

10

Key term
Port number:
Two applications sending to
and receiving from each other,
are identified by numbers called
port numbers (see Figure 5.28).

Institution licence - St Martins School Essex

5b Network protocols

279

FTP (File Transfer Protocol)

File Transfer Protocol (FTP) is an application layer protocol that enables files on one host, computer B, to be
copied to another host, computer A. One host runs an FTP client and the other an FTP server.

FTP servers use two ports: port 21 for commands and port 20 for data.

Figure 5.28 shows an FTP client connected to an FTP server via TCP so that it can send a command request
for a file Test.txt located on the FTP server. The FTP response is to send file Test.txt through the TCP
connection to the FTP client.

Port 57359 is bound to the TCP socket on the client side, whilst on the server side, port 21 is bound to the
command socket and port 20 to the data socket.

The client may need to navigate the directory structure of the server, create new directories, rename files and
directories, delete files and directories. These are
sent to the server as command requests.

Figure 5.29 shows FTP client software
(FileZilla) running on a computer with IP
address 192.168.2.22 connected to an FTP
server running on a computer with IP address
64.29.145.9. This server is located in the USA
whilst the client computer is in the UK.
The FTP client and FTP server software rely on the
FTP protocol embedded in the Application layer of
the TCP/IP protocol stack to communicate.

Figure 5.29 FTP client using FileZilla FTP client software
connected to an FTP server

Questions
Explain the purpose of FTP (FileTransfer
Protocol).

11

ApplicationFTP protocol

Command
Source

Address
Destination

Address

DataSource
Address

Destination
Address

FTP protocol

Internet layer

Link layer

Port 57359
TCP

Application

FTP Client

192.168.2.22
Computer A

64.29.145.9
Computer B

FTP Server

Internet layer

Link layer

Port 21
commands

TCP

Port 20
data
TCP

Request
for

Test.txt

Computer
A

Port 57359

Computer
B

Port 21

Computer
A

Port 57359

Computer
B

Port 20
Test.txt

Figure 5.28 FTP transfer of file Test.txt from Computer B to Computer A

The Application
layer is the highest
abstraction layer of
the TCP/IP model/
stack. It provides
the interfaces and
communication
protocols, e.g. FTP
protocol, needed
by the hosts and
their users. Other
Application layer
protocols are, for
example, HTTP,
HTTPS, SMTP,
IMAP.

TCP/IP protocol
stack

Institution licence - St Martins School Essex

5 Fundamentals of computer networks

280

Email protocols

Simple Mail Transfer Protocol (SMTP)

Simple Mail Transfer Protocol (SMTP) is used by e-mail clients to send e-mail. It is a relatively simple text-based
protocol.
One or more recipients of a message are specified then SMTP is used by the email client to transfer the message text
to a mail server listening on port 25. The mail server takes care of delivering the mail to the ultimate destination
using SMTP.
For creating and sending email the SMTP protocol supports commands such as

• MAIL FROM: - defines the e-mail address of the sender of the message.
• RCPT TO: - defines the e-mail address of a recipient of the message. Repeating this command once for

each recipient means you can send one piece of mail to many users without having to repeat the entire
process over and over again.

• DATA marks the start of the data portion of the message, essentially everything that you would
consider “content”, this includes the “To:”, “From:”, “CC:” etc. as these are not commands but simple
informational components making up a header which the e-mail client picks out of the content and
displays in a far nicer format. Just as a reminder - anything which is in the content can be faked as it is
content and so consequently cannot be validated.

Internet Message Access Protocol (IMAP)
IMAP is a protocol that was designed to allow access to emails stored on a remote server. Users essentially connect
to an IMAP server to read and organise their emails. Remote access from any user device is supported, e.g. smart
phone, tablet, PC. New emails are cached locally so that they are available to read again without needing to contact
the server. The user may configured the emails stored on the server into folders, mark emails as read, etc. One can
think of the service provided by IMAP as a kind of cloud storage.

Questions
Which of the networking protocols labelled A .. E would be used to
(a) make a payment securely when purchasing goods from a website?
(b) send an email?
(c) view email stored on a server?
(d) transfer a file between hosts?
(e) retrieve a web page insecurely?

A FTP

B SMTP

C IMAP

D HTTPS

E HTTP

A user accesses a web page stored on a remote web server through a web browser. Table 5.4 shows the
actions that need to take place to make this possible. Put these actions in the correct order (1-4, where 1 is
the first action that needs to take place and 4 is the last). What application protocol could have been used
to obtain this web page?

12

13

Layer Order (1-4)
Server responds by sending web page
Server receives request for web page
Web browser requests web page
Web browser receives web page

Table 5.4

Institution licence - St Martins School Essex

5b Network protocols

281

In this chapter you have covered:

 ■ Defining the term ‘network protocol’

 ■ The purpose and use of common network protocols including:

• Ethernet

• Wi-Fi

• TCP (Transmission Control Protocol)

• UDP (User Datagram Protocol)

• IP (Internet Protocol)

• HTTP (Hypertext Transfer Protocol)

• HTTPS (Hypertext Transfer Protocol Secure)

• FTP (File Transfer Protocol)

• Email protocols:

 � SMTP (Simple Mail Transfer Protocol)

 � IMAP (Internet Message Access Protocol).

Institution licence - St Martins School Essex

282

 ■ 5c Network security

The need for and importance of network security
In the physical world, locks are placed on doors and alarm systems are fitted to
property to protect against theft of assets and personal harm.
In the digital world, every computer system needs similar protection especially
against the serious consequences of the loss of business or personal data
whether from theft or otherwise. Businesses can fail as a result. For example,
according to SC Magazine, the company Code Spaces was closed down after its
Amazon Elastic Compute Cloud control panel was hacked and data, backups,
and off-site backups were erased.
Security breaches do not just affect businesses. The computer systems of
individuals are also vulnerable. Individuals can lose money if their online bank
details are stolen by hackers or if their identities are stolen.
Connecting a computer or computing device to a network increases the risk
that the computer could be attacked and data stolen or damaged. In fact, poor
security on a network computer could allow unauthorised access to the whole
network with potentially serious consequences. That is why network security is
important especially if connection to the Internet is supported because many of
the protocols used in the Internet do not provide any security.
Tools to “sniff” passwords on the network are in common use by malicious
hackers. Thus, applications which send an unencrypted password over the
network are extremely vulnerable.

Network security methods
Network security

Network security consists of the measures and policies put in place by a
network administrator to prevent and monitor unauthorised access, denial of
service, misuse, modification, and destruction of network-accessible resources,
e.g data including network password lists.
Where data is concerned security refers to the protection of data against
unauthorised access/disclosure, alteration, or destruction.

Learning objectives:

 ■ Understand the need for,
and importance of, network
security

 ■ Explain the following methods
of network security:

• authentication

• encryption

• firewall

• MAC address filtering.

5 Fundamentals of computer networks
5 Fundamentals of computer networks

Questions

Why is network security important?

What is meant by network security?

1

2

Key term

Data security:
Data security means protecting
against unauthorised access,
alteration or destruction.
A greater level of data security
can be achieved by the use
of data security methods,
authentication, encryption,
firewall and MAC address
filtering, in combination.

Key term

Network security:
Network security consists
of the measures and policies
put in place by a network
administrator to prevent and
monitor unauthorised access,
denial of service, misuse,
modification, and destruction
of network-accessible resources,
e.g data including network
password lists.

Institution licence - St Martins School Essex

5 Fundamentals of computer networks

283

Authentication

Network security systems are designed to let authorised people into the network, and to keep unauthorised people
out. This involves three distinct steps:

1. Identification:
The identification step requires that a person identifies themselves,
e.g. by means of identification string such as an email address or userID.

2. Authentication:
Once identification has been provided, the person is required to provide evidence of
their identity which could be one or more of the following

 � Something they know, e.g. a password or a PIN
 � Something they have, e.g. a smart card or a token/security device
 � Some aspect of a person’s physiology such as their fingerprint or iris pattern of

their eye. This is called biometrics.
3. Authorisation:

 � Allows an authenticated person access to the system with the authority
to carry out certain permitted operations such as read/write and delete
specific data in an area of storage allocated to them.

Authentication by password is considered vulnerable because humans find it
difficult to remember a password that an attacker would find difficult to guess.
An improvement is to use a one-time-password (OTP) generated by a token or
security device such as the one shown in Figure 5.30.
Tokens are designed to generate seemingly random passwords that are synchronized with a token server.
When an OTP is combined with a Personal Identification Number (PIN), two-factor authentication is achieved
because the client needs to have something (the token) and know something (the PIN). The user enters their PIN
into the token (using keypad such as the one shown in Figure 5.30) they hold to get the next one-time password.
The token shown in Figure 5.30 has an internal clock which was synchronised with the bank’s token server clock
when the token was issued. The software in the token that generates the next password relies on this clock time to
set the time period for which the password is valid. This enables the token server to generate the corresponding
password so that submission of the next one-time password can be matched at the token server to authenticate the
user.
Biometric authentication uses the person’s body as their “password”.
Instead of the “password” being something that the person knows, it is something physical and unique that they
possess.
A user might use biometrics to authenticate themselves to a system or might use biometrics to authenticate
themselves to a local system (a smart card or token) The card/token then authenticates itself to a remote system.

Figure 5.30
Banking security

device token

Key term
Authentication:
The process or action of
verifying the identity of a user
or process.

Questions
What is authentication in the context of computer security?
Methods used separately or in combination to verify the identity of a user attempting to log in to a
computer network are classified as follows:
 Something they know,
 Something they have,
 Something of the person
Give one example of each of these methods.

3
4

Institution licence - St Martins School Essex

5c Network security

284

Encryption

If authentication uses cryptography, then an attacker listening to the network
gains no information that would enable them to falsely claim another’s identity.
Passwords sent across the network in plain text form can be intercepted and
subsequently used by eavesdroppers to impersonate a user.
Encrypting data, including passwords, sent across a network can therefore
improve network security.
Encryption mathematically converts data into a form that is not directly
readable. Therefore, an attacker who is eavesdropping on the network will not
be able to decode passwords and data sent over the network in encrypted form.

Figure 5.31 shows part of a bank login screen that uses the secure web protocol
HTTPS (Hypertext Transfer Protocol over Secure Sockets).
HTTPS is a web protocol that encrypts and decrypts user page requests as
well as the pages that are returned by the web server. A user’s username and
password will therefore be sent encrypted to HSBC®’s authentication server.

Questions
Why is it considered a good idea to encrypt network communication?5

Key point
Encryption and
authentication:
If authentication uses
cryptography, then an attacker
listening to the network gains
no information that would
enable it to falsely claim
another’s identity.

Did you know?

Securing wireless networks:
User’s data sent between two
devices, e.g. a wireless station
and an access point needs
to be private to those two
devices, i.e. kept confidential by
securing against unauthorised
access. Unfortunately, radio
transmissions over a wireless
network are easily intercepted
and read by third parties unless
encrypted.
Wi-Fi Protected Access (WPA)
and Wi-Fi Protected Access
II (WPA2) are two security
protocols developed by the
Wi-Fi Alliance to secure wireless
computer networks.

Did you know?

Authentication can also be strengthened through the use of public key cryptography.
For example, a user has a smart card that contains a public key and a matching private
key.
The user’s public key is placed on file at the remote server.
To authenticate the user, the remote server sends the user a random challenge (a
random number).
The user signs the challenge with their private key to create a digital signature and
sends this signature to the remote server, which verifies the signature with the public
key that it has on file.
In this way, the remote system can verify that the user has possession of the private
key without ever needing sight of it and the user has no need to use a password.

Figure 5.31 Bank login screen showing use of
the secure web protocol HTTPS

HTTPS

Information

HTTPS:
HTTPS will encrypt payment
details such as credit card
number and credit card security
code when purchasing goods
from a website, thus enabling
the payment to be made
securely.
In addition, HTTPS will assure
the payee that the website
is genuine because HTTPS
will use the website’s digital
certificate issued by a trusted
authority.

Institution licence - St Martins School Essex

5 Fundamentals of computer networks

285

Firewall
A firewall is a combination of hardware and software that isolates an
organisation’s internal network from the Internet at large, allowing some
packets to pass and blocking others. Figure 5.32 shows a firewall located
between an organisation’s local area network and the router that connects, via
an ISP, the organisation’s network to the Internet.
With all network traffic entering and leaving the organisation’s network
passing through the firewall, the firewall is able to allow authorised traffic
through whilst blocking unauthorised traffic. The firewall is positioned as
shown in Figure 5.32 so that it watches over all traffic crossing the gateway
point, acting like a sentry or doorman. A doorman/sentry positioned at the
entrance or exit of a building watches for unauthorised attempts to enter the
secure area. Some people are allowed to enter, others are prevented.

MAC address filtering
MAC addresses are 48-bit addresses uniquely assigned to each network interface
card (NIC). Alternative name for a NIC is network adapter.

In MAC address filtering, an internal table (in Wi-Fi router in wireless networks
or in a managed switch in wired networks) of MAC addresses is consulted to
decide whether to permit access to the network or not. If the MAC address is
on this list then the device with this MAC address may join the network. If its
MAC address is not on the list then any attempt made to join the network will
be rejected.

However, MAC filtering can be defeated by a spoofer who learns the MAC address of a valid network interface card,
i.e. one on the list, by scanning network traffic. A MAC address is “glued” into a network card, but it is possible to
command the operating system to change information about the MAC address in every data packet it sends out to
the network. If a spoofer were to do this to the network interface card in their machine then the spoofer could gain
access to the MAC address list protected network.

In this chapter you have covered:
 ■ The need for, and importance of, network security
 ■ The following methods of network security:

• authentication
• encryption
• firewall
• MAC address filtering.

Questions
What purpose is served by a network firewall, and typically where
would a firewall be located in a network?

6

ISP
& DNS servers

Firewall

Web server

Internet
gateway

Router

Private Local Area Network

Interface 1

Interface 2

A B C D

E

Figure 5.32 Local Area Network
behind a firewall

Key term
Firewall:
A firewall is a combination
of hardware and software
that isolates an organisation’s
internal network from the
Internet at large. It monitors
incoming and outgoing network
traffic and decides whether to
allow or block specific traffic
based on a defined set of
security rules.

Key term
MAC address filtering:
In MAC address filtering, an
internal table (in Wi-Fi router in
wireless networks or in a managed
switch in wired networks) of MAC
addresses is consulted to decide
whether to permit a device access to
the network or not on the basis of
its MAC address. The MAC address
is a physical address embedded
within the device’s network adapter.

Questions
Describe MAC address filtering.

Describe how the methods of authentication, encryption, firewalls
and MAC address filtering could be used in combination to secure
a network against unauthorised access, alteration or destruction.

7

8

Institution licence - St Martins School Essex

286

 ■ 5d Four layer TCP/IP model

The four layer TCP/IP model
Networking protocols were designed to make possible communication
between application programs executing on different hosts whilst hiding the
complexities of the underlying network from these application programs.
A host, or host computer, is any computer system that connects to an internet
and runs applications.
The term process is used for an instance of a program in execution, so it
is actually processed in different hosts connected by a network that are
communicating.
Layered organisation
Networking protocols are usually developed in layers.
Each layer is responsible for a different part of the communication process.
The software that implements a protocol is called protocol software and
the software that implements a suite of protocols such as TCP/IP, is called a
protocol stack.
The TCP/IP protocol suite consists of four conceptual layers as shown in
Figure 5.33:

• Application layer
• Transport layer
• Internet or IP layer
• Link layer.

It is implemented in software as the TCP/IP protocol stack in separate
software modules corresponding to the individual layers of the protocol suite.

Each layer and therefore each software module has a different responsibility.
The protocol stack is installed on each computer either as a part of the
operating system or as a software library.

Learning objectives:

 ■ Describe the four layer TCP/
IP model:

• application layer

• transport layer

• internet layer

• link layer

 ■ Understand that the HTTP,
HTTPS, SMTP, IMAP and
FTP protocols operate at the
application layer

 ■ Understand that the TCP and
UDP protocols operate at the
transport layer

 ■ Understand that the IP
protocol operates at the
network layer.

5 Fundamentals of computer networks
5 Fundamentals of computer networks

Application

Transport

Internet

Link

FTP, email(SMTP, IMAP), Web browsing (HTTP, HTTPS)

TCP, UDP

Internet or IP layer

Ethernet, PPP, WiFi, DOCSIS (cable TV)

Figure 5.33 The four layers of the TCP/IP protocol suite and stack
Key terms

Host:
A host is any computer system
that connects to an internet and
runs applications.

Process:
An instance of a program in
execution.

Institution licence - St Martins School Essex

5 Fundamentals of computer networks

287

Application programs interact with the software stack via an Application
Programming Interface (API). The de facto standard is the socket API.

The following Python code snippet shows a client application using the socket
API to set up a socket to send a message to a server:

Figure 5.34 shows a client process and a server process that use the socket API

from the TCP/IP protocol stack to send and receive messages via a TCP/IP
connection pipe established between client and server.

Application layer
A process in one end-system (host) uses the application layer of TCP/IP to
exchange packets of information with a process in another end-system. The
packets of information at the application layer are called messages.
The application layer uses different application-layer protocols for different
applications. For example, if the application is designed to enable Web pages
to be fetched from a Web server then the application will use either the HTTP
application-layer protocol or the HTTPS application-layer protocol. An
application-layer protocol defines the kind of messages to send. In the case of
HTTP or HTTPS, one such message could be a GET message.

Transport layer
The transport layer of the protocol stack is a piece of software in each host.
This software implements the two transport protocols Transmission Control
Protocol (TCP) and User Data Protocol (UDP). TCP enables applications
executing on two hosts to establish a two-way connection and exchange
application-layer messages through a reliable byte-stream channel (pipe) for
data flows in either direction between the two end-systems as shown in Figure
5.34. It also allows the connection to be terminated.

clientSocket = socket(socket.AF_INET, socket.SOCK_STREAM)

message = "Hello Server"

clientSocket.sendTo(message, (serverName, serverPort))

Key terms
Protocol:
A protocol provides agreed
signals, codes and rules for data
exchange between systems.
Networking protocols:
Networking protocols make
possible communication
between processes executing on
different hosts whilst hiding the
complexities of the underlying
network from these processes.

TCP/IP protocol suite:
The TCP/IP protocol suite
consists of four conceptual
layers: application, transport,
internet or IP, and link.

TCP/IP protocol stack:
Implements the TCP/IP
protocol suite in software. byte pipe

connection pipe

Host A
Host B

End-system End-system

Server process
e.g. Web server

Messages Messages

Server
socket

Client
socket

TCP/IP protocol
stack

TCP/IP protocol
stack

Client process
e.g. Web browserApplication

Modules
within

operating
system or
library of
routines

Socket API used by both client
and server processes to send
and receive messages

Figure 5.34 Sending and receiving messages using the socket API

Key term
Transmission Control
Protocol (TCP):
TCP enables applications
executing on two hosts to
establish a connection and
exchange application-layer
messages through a reliable
byte-stream channel (pipe) for
data flows between the two end
systems.

Key term
Application layer:
Application layer protocols
are used to exchange data
between programs running
on the source and destination
hosts. It is the application
layer that provides the interface
between these programs and the
underlying network over which
the programs’ messages are
transmitted, e.g. HTTP message
GET / which fetches the default
Web page from a Web server.

Institution licence - St Martins School Essex

5d Four layer TCP/IP model

288

TCP breaks long messages into shorter segments which it sends as separate
transport-layer packets known as TCP segments.
The application at the sending side (e.g. a Web browser using the application-
layer protocol HTTP) pushes messages (e.g. GET) through a TCP/IP socket.
The transport-layer protocol TCP has the responsibility of getting the messages
to the socket of the receiving application process, e.g. a Web server listening on
port 80. Port numbers such as port 80 are 16-bit numbers used for application
(specific instance of a Web browser request) and service identification on the
Internet (a Web server).
TCP does everything in its control to guarantee delivery of the application-
layer message and also guarantee that the received TCP segments will be
reassembled in the correct order to form the message to be passed to the
application-layer and then the corresponding application process.
During set up TCP establishes the maximum size of the packets (Maximum
Segment Size or Maximum Transmission Unit) it can use through the network
- see http://www.tp-link.com/us/FAQ-190.html for an exercise that you can do
to establish the maximum packet size.
Once the TCP has established a connection it:

• Monitors the connection for transmission errors and responds when
an error is detected by retransmitting the segment that suffered the
error

• Detects when a connection is broken
• Performs flow control by speed matching sender and receiver
• Provides congestion control when the network is congested.

Internet or IP (Internet Protocol) layer
The transport layer uses the IP layer to carry its segments. Each TCP segment is
encapsulated in an IP packet before it is sent across the internet.
The IP layer adds source and destination IP addresses to packets on their way
from the transport layer to the link layer, and removes source and destination
IP addresses from packets on their way from the link layer to the transport
layer.
The internet or IP layer in hosts and routers move these packets known as
IP or Internet Protocol packets from one host to another without regard to
whether these hosts belong to the same network or different networks.
The Internet Protocol is a connectionless protocol which just provides a best
effort but not guaranteed way of delivering packets called datagrams. The
reliability of the transmission is left to the layer above, the transport layer.
Getting to the destination host may require many hops via intermediate routers along the way.
Both hosts and routers need to use the internet or IP layer of the TCP/IP protocol stack but since the job of a
router is dedicated to routing packets, a router only requires use of the internet and link layers of the TCP/IP
stack. The IP layer in a router must have sufficient knowledge of other routers and links in its internet to be able to
make routing decisions for packets that pass through it.
Together TCP and IP hide the differences between the underlying networks through which packets pass when
going from source to destination host.

Key term
Function of Transport layer:
The basic function of the
transport layer is to
• accept messages/data from the

layer above it
• split these into smaller units

called segments if necessary
(segment size determined at
TCP connection set up time)

• pass these segments to the
internet or IP layer

• ensure that all the segments
arrive correctly at the other
end

• reassemble the received
segments, which it gets from
the internet layer, in the
correct order to form the
message/data to pass to the
layer above.

The transport layer is a true
end-to-end layer which carries
messages/data all the way from
the source to the destination.

Key term
Internet or IP layer:
The internet or IP layer of the
TCP/IP protocol stack in hosts
and routers is responsible for
moving IP-layer packets from
one host to another without
regard to whether these hosts are
on the same network or not.
It adds source and destination
IP addresses to packets on their
way from the transport layer
to the link layer, and removes
source and destination IP
addresses from packets on their
way from the link layer to the
transport layer.

Institution licence - St Martins School Essex

http://www.tp-link.com/us/FAQ-190.html

5 Fundamentals of computer networks

289

Link layer
The link layer handles all the physical details of interfacing with the network cable or wireless connection. It
includes the network interface card (network adapter) and a device driver (installed in operating system).
TCP/IP protocol supports many different types of link layer, depending on the type of networking hardware being
used. One example is Ethernet.

The link layer adds source and destination hardware addresses (e.g. MAC addresses) to packets that it receives
from the IP layer then dispatches the packets onto the local cable or wireless connection.

If the packet is destined for a host on another network, the link layer destination address is the hardware address of
the gateway (router) to the internet which the other network is connected to.

In an Ethernet local area network (LAN)
these hardware addresses are Ethernet
card (Network Interface Card) addresses,
or MAC addresses. Figure 5.35 shows
a packet despatched by the link layer of
a host with IP address 174.89.0.54 to a
remote host with IP address 210.5.0.67.
Figure 5.35 shows the first, second and
last hop of many hops.
Note that the link layer hardware
address changes from hop to hop
whilst the source and destination IP
addresses remain constant.
This is because the link layer’s role is to
stream bytes between directly connected
machines, hosts and routers.
It is the link layer that puts bits onto the
network cable or wireless connection.
Sending to a remote machine is done
in hops where each hop is a direct
connection (link) between a host and a
router, a router and a host, a router and
another router, or two directly connected
hosts.

In this chapter you have covered:

Key term
Link layer:
The link layer handles all the physical details of
interfacing with the network cable or wireless
connection.
The link layer adds source and destination
hardware addresses (e.g. MAC addresses) to
packets that it receives from the IP layer then
despatches the packets onto the local cable or
wireless connection.

Gateway Gateway

Router
network

Link layer

Application layer
HTTP

Internet
layer

Internet
layer

TCP layer

Physical cable Physical cable

Web
browser

Link layer

Application layer
HTTP

TCP layer

Web
server

IP address
174.89.0.54

IP address
210.5.0.67

Link-layer address
00-03-47-C9-69-52

Link-layer address
00-04-34-98-15-21

 Link-layer address
00-03-47-B6-21-46

 Link-layer address
00-02-22-E3-54-12

 Link-layer address
00-04-34-A8-19-10

 Link-layer address
00-04-34-65-07-81

First hop

Source
IP address

174.89.0.54

Destination
IP address
210.5.0.67

Source Link-layer
address

00-03-47-C9-69-52

Destination
Link-layer address
00-03-47-B6-21-46

Second hop

Source
IP address

174.89.0.54

Destination
IP address
210.5.0.67

Source Link-layer
address

00-02-22-E3-54-12

Destination
Link-layer address
00-02-77-A1-88-53

Last hop

Source
IP address

174.89.0.54

Destination
IP address
210.5.0.67

Source Link-layer
address

00-04-34-98-15-21

Destination
Link-layer address
00-04-34-65-07-81

Figure 5.35 TCP/IP protocol stack and the role of the link layer (or
link layer) in the communicating hosts and intermediate routers

 Link layer address
00-02-22-E3-54-12

 Link layer address
00-02-77-A1-88-53

 Link layer address
00-04-34-A8-19-10

 Link layer address
00-02-77-A1-45-11

 Gateway

 Gateway

IP address
210.5.0.67

 Link layer address
00-04-34-65-07-81

Link layer address
00-04-34-98-15-21

IP address
174.89.0.54

Local Area Network

Router Network

 Link layer address
00-03-47-B6-21-46

Link layer address
00-03-47-C9-69-52

Link-layer address
00-02-77-A1-88-53

Institution licence - St Martins School Essex

5d Four layer TCP/IP model

290

 ■ The four layer TCP/IP model:
• application layer
• transport layer
• internet layer
• link layer

 ■ That the HTTP, HTTPS, SMTP, IMAP and FTP protocols operate at the application layer
 ■ That the TCP and UDP protocols operate at the transport layer

 ■ That the IP protocol operates at the internet layer.

Questions
TCP/IP is a four-layer protocol stack used in networking.
Complete the table, using each number from 1-4 once, to indicate the correct order for these layers (where
1 is the top layer and 4 is the bottom layer).

Figure 5.36 shows the address part of a packet sent between two computers A and B on the same local
area network.

The MAC addresses of their network interface cards are as follows
Computer A: 00-03-47-C9-69-52
Computer B: 00-03-47-C9-44-35

Their IP addresses are as follows
Computer A: 212.168.0.54

Computer B: 212.168.0.32

Complete the table for the address part of a message packet sent from A to B.

Computer B is now relocated to a different local area network on the other side of the world from
computer A but it is still reachable from A across the Internet. Computer A addresses a message packet
and despatches it to computer B. The message packet successfully reaches B. Which address in the packet
must have been changed by computer A for the packet to be successfully routed to B?

Describe the roles of the application layer and the data link layer in the four-layer TCP/IP model.

1

Layer Order (1-4)
Internet
Application
Link
Transport

2

3

4

Source
IP address

Destination
IP address

Source link-layer
address

Destination
link-layer address

Figure 5.36

Layer Address
Source link-layer address
Destination link-layer address
Source IP address
Destination IP address

Institution licence - St Martins School Essex

291

 ■ 6.1 Cyber security threats
What is cyber security?
Cyber security consists of the processes, practices and technologies designed
to protect networks, computers, programs and data from attack, damage, or
unauthorised access.

When computers or networks and their programs and data are attacked, the
attacker attempts to bypass the security of these systems in order to “hack” into
them. Hence the use of the term hacker for an attacker.

The main purpose of cyber security is to minimise the chances of an attacker
hacking into a system, and exploiting this access for personal gain or malicious
intent, e.g. to steal confidential information such as passwords.

 ■ 6.2 Social engineering threats

Every major study on technical vulnerabilities and hacking says the following:

• Users are the weakest link, whether on purpose or by mistake
• Users and their actions represent a giant security hole that

simply can’t ever be completely plugged.
Social engineering provides a low tech approach to attacking a system.
Social engineering is the art of manipulating a person, or group of people, into
providing information or a service they would otherwise never have given.

Social engineers prey on people’s natural desire to help one another, their
tendency to defer to authority, their ignorance, greed and response to fear of
consequences, e.g. your email account will be suspended unless you login and
confirm your identity.

Learning objectives:

 ■ Be able to define the term
cyber security and be able to
describe the main purposes of
cyber security

 ■ Understand and be able to
explain the following cyber
security threats:

• social engineering
techniques

• malicious code (malware)

• pharming

• weak and default
passwords

• misconfigured access
rights

• removable media

• unpatched and/or
outdated software

 ■ Explain what penetration
testing is and what it is used
for.

6 Cyber security
6 Cyber security

Questions
You are asked by your network’s administrator to provide your
password. How would you respond?

You are surfing the Web and a pop-up box appears in your browser
window to tell you that a virus has been detected on your system. To
remove this virus you are told to click on a link. Would you click on
the link? Explain your answer.

An advert appears in the side window of your browser when you are
visiting a games website. The advert is offering a free game which
may be downloaded immediately by clicking on a download button.
Would you click on the download button? Explain your answer.

1

2

3

Key term
Cyber security:
Cyber security consists of
the processes, practices and
technologies designed to protect
networks, computers, programs
and data from attack, damage,
or unauthorised access.

Key term
Social engineering:
Social engineering is the art
of manipulating a person, or
group of people, into providing
information or a service they
would otherwise never have
given.

Institution licence - St Martins School Essex

6 Cyber security

292

Malicious code(malware)

Malicious code (malware) is software that sets out to:
• Intentionally harm a computer system and other systems that it

connects to
• Steal confidential information such as passwords
• Take control of a computer system for purposes such as sending spam

or taking part in a Distributed Denial of Service (DDoS) attack
• Hold you to ransom (ransomware) by demanding payment to

unencrypt your files
• Cause physical damage to machinery or systems controlled by a

computer system, e.g. STUXNET malware causing damage to the
operation of centrifuges used by Iran in its nuclear bomb programme.

The attacker might send an email containing a link that the recipient is asked
to click. The link won’t be so blatant as to use the label “Click me to download
malicious code” but if the email comes from an unknown source the likelihood
is that this will be the effect of clicking the link.
Pharming

Pharming is an “under the counter, sleight of hand” technique used by
cybercriminals to redirect you from a legitimate site that you have specified to
a bogus copy website elsewhere thus allowing criminals to steal the information
that you enter.
Pharming exploits the fact that when the numerical addresses of the Internet
(IP addresses, e.g. 123.123.123.123), which are used for routing packets of
data on the Internet, became too inconvenient to remember, they were given
corresponding, easier to remember, symbolic names called domain names, like
umobank.co.uk.
Every time a form of a symbolic address is entered, e.g. www.umobank.co.uk, it
has to be turned back into its corresponding IP address.
A Domain Name Service (DNS) server on the Internet handles this conversion
process, unless either a “local host file” on your computer or a local cache on
your computer already provides this.
When you enter, for example, a website address into your browser, e.g. www.
umobank.co.uk, your computer contacts a DNS server and requests the
corresponding and genuine IP address, 123.123.123.123.
Hackers can subvert this process in two ways:
• They can send out a Trojan horse that rewrites the local host file on your

computer, so that it associates the domain name with a bogus website, e.g.
www.umobank.co.uk ↔ 97.86.14.35. You are then directed to the bogus
website with IP address 97.86.14.35, even though you entered the correct
symbolic website address, e.g. www.umobank.co.uk.

• Alternatively, they can alter the DNS itself, i.e. alter its records so
that anyone who tries to visit that symbolic address is directed to the
bogus website. Compromised DNS servers are sometimes referred to as
“poisoned”.

Information
Spam:
Unsolicited email or messages
that are sent to groups of
people.
Distributed denial-of-service:
A distributed denial-of-service
(DDoS) attack occurs when
multiple systems flood the
bandwidth or resources of a
targeted system, usually one or
more web servers. The targeted
system is unable to cope and
the service it provides becomes
unavailable.

Key term
Pharming:
Pharming is a cyberattack
intended to redirect a website’s
traffic to a fake or bogus website.

Key term
Domain Name Service (DNS):
The domain naming system
relies upon DNS servers to
handle the conversion of the
letter-based (symbolic) website
names, which are easily recalled
by people into the machine-
understandable digits (numeric
addresses).

Key point
Pharming (pronounced
‘farming’) is a form of online
fraud very similar to phishing
as pharmers rely upon the
same bogus websites and theft
of confidential information.
However, where phishing must
entice a user to the website
through ‘bait’ in the form of a
phony email or link, pharming
re-directs victims to the bogus
site even if the victim has typed
the correct web address. This is
often applied to the websites of
banks or e-commerce sites.

Institution licence - St Martins School Essex

6.2 Social engineering threats

293

By only attempting to connect to a website with SSL/TLS protection, i.e. prefix
https:// in the web address and in the browser, your browser will be
able to check with a Certificate Authority that the certificate associated with the
site corresponds to the one for the legitimate website. If a hacker tries to mimic
a secure site, a message will warn that the site’s certificate does not match the
address being visited.
If you see a warning that a site’s certificate is not valid or not issued by a trusted
authority, you should not enter the site.
The URL is also a great place to check. Always ensure that, once the page
has loaded, that the URL is spelt correctly and hasn’t redirected to a slightly
different spelling, perhaps with additional letters or with the letters swapped
around. If you examine the web address in Figure 6.2.1 you will observe that
umo is spelt u r n o.

Weak passwords

The length of a password, and the size of the character set from which its
characters are chosen, can dictate the vulnerability of a system to penetration by
an attacker, i.e. how easy is it to guess the password and using this knowledge
gain access to a system.

For example, if passwords are restricted in length to a maximum of 3 letters,
chosen from the 26 lowercase letters of the English alphabet then the maximum
number of permutations of these letters is

26 x 26 x 26 = 17576

A computer might take only a few seconds in a brute-force attack to try each
permutation in turn until the password is found that enables access to a system.
Three letter passwords would be considered very weak. Even extending the
choice to the 95 characters (letters and symbols) on a computer keyboard (26
uppercase, 26 lowercase, 10 digits and 33 punctuation and special symbols)
would not significantly improve matters.

Weak passwords are also ones that use predictable patterns, e.g. the most
common passwords of 2016 include “123456”, “password”, “qwerty” and
“111111”, according to a recently released compilation1.

Using common words, i.e. words that would be found in a dictionary, or a list
of people’s names or place names also produces weak passwords. Use of such
passwords can be discovered by a dictionary attack. A dictionary attack is one
that attempts to discover a password by trying words found in dictionaries.
The dictionary is organised by length of word so it tries single letter words then
double letter words next and so on.
1 https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-
2016-research-study/

Key point
Graphic cards:
Graphic cards are cheap, and
can be programmed to do basic
computations very quickly such
as trying to guess password
combinations.

Key fact
Weak passwords:
Many people use weak passwords
because it can be difficult to
remember strong passwords.

Secure

Figure 6.2.1 Bogus site with a slightly different spelling of umo

Key fact

Weak passwords:
Attackers know that many
people use passwords comprised
of easy-to-remember lowercase
letters. Attackers typically work
on those combinations first.

Key points

Strong passwords:
Length and complexity of
password also adds security.
Adding numbers, symbols,
and using both lowercase
and uppercase characters
significantly increases the time
needed to decipher a password.

Task
Read the following article
on creating a secure
password you will actually
remember:
http://lifehacker.com/
four-methods-to-create-
a-secure-password-youll-
actually-1601854240

1

Institution licence - St Martins School Essex

https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/
https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/
http://lifehacker.com/four-methods-to-create-a-secure-password-youll-actually-1601854240
http://lifehacker.com/four-methods-to-create-a-secure-password-youll-actually-1601854240
http://lifehacker.com/four-methods-to-create-a-secure-password-youll-actually-1601854240
http://lifehacker.com/four-methods-to-create-a-secure-password-youll-actually-1601854240

6 Cyber security

294

Recent tests2 cracked eight-character passwords in less than two hours by using
clusters of graphic cards programmed to try permutations of the 95 characters
found on a computer keyboard (Figure 6.2.2). An eight-character password
is thus now considered weak. The testers concluded that the same processing
power applied to twelve-character passwords was likely to take a minimum of
17134 years. A twelve-character password is thus considered very strong.

Passwords can be difficult to remember, which is one reason why people choose
short simple passwords containing predictable sequences of letters forming a
memorable name or word contained in a dictionary.

The best kind of password is one that is long and random, or at least appears
to be random. A trick to creating a strong password is to use a sentence or
phrase that is meaningful and easy to remember. For example, the password
Mio68whiJ£76# was created by taking the initial letters of the words in the
following sentence, substituting ‘£’ for ‘,’ and # for ‘.’ and including the digits
directly: “My innings of 68 was hit in July, 76.”

• Recent research has shown that changing passwords frequently is no
better than not changing passwords, although people still argue that it
is.

• Don’t re-use passwords and use a different password for each system
that you log into.

• The use of a single password such as your Facebook or Google
password is not recommended because if this is stolen then all the
systems that you use this password for will be compromised.

• It is alright to write passwords down in a notebook as long as the
notebook can be kept somewhere safe away from the computer(s) that
you use and from being accessed by anyone but you.

2 http://www.rh.gatech.edu/news/341201/teraflop-troubles-power-graphics-
processing-units-may-threaten-worlds-password-security

Figure 6.2.2 Computer keyboard

Did you know?
There are still systems that do
not allow passwords longer than
eight characters and no additional
security measures such as two-
stage authentication.
In June 2014, an ATM belonging
to the Bank of Montreal was
successfully hacked by two
fourteen year-olds using an old
online ATM operator’s manual
that showed how to log into the
cash machine’s administrator’s
account.
During a school lunch break, one
day, they decided to conduct an
experiment with one of the bank’s
ATM cash machines.
Expecting little success they tried
a six-digit password which to their
surprise got them into the system.
Rumour has it that the password
they tried was ‘123456’.
They immediately went into
the bank and told staff that
the security on their ATM was
woefully inadequate. The bank
staff did not believe the two
students initially until they
received a demonstration. The
students were then interviewed by
the branch manager and sent back
to school with a note explaining
that they were late because they
had been assisting the bank with
their security. Don’t try this
yourself!

Task
Read the following article on the potential consequences of the use of
weak passwords.

Virgin Media router security flap follows weak password exposé:
https://www.theregister.co.uk/2017/06/23/virgin_media_router_security_flap/

2

Institution licence - St Martins School Essex

6.2 Social engineering threats

295

Default passwords

New computers with an operating system already installed, hardware such
as routers, wireless security cameras, baby monitors, and database engines
such as MySQL, for example, come set up with a default password for the
administrator’s account, and the account’s username, e.g. admin.

An administrator’s account has the highest possible access rights and therefore
full control to do anything to the system.

It is not difficult for a hacker to obtain the default password used by a
particular manufacturer or installer for the systems sold. Armed with a
knowledge of the default password for the administrator’s account an attacker
could take control of a system in order to profit in some way from the gift of
unfettered access.

It is very important to change the default password for the administrator’s
account when setting up a new system and before going live.

Internet of Things (IoT) devices connect to wireless networks and are therefore
vulnerable to being “hacked”. Tens of billions of these devices have been
deployed. If they are password protected then they could have been sold with
a default password and username. The Mirai malware let attackers hijack
thousands of Internet of Things devices and carry out distributed denial-of-
service attacks.

Users should reset the default password when they get an IoT device.

Questions
Which of the following statements would you judge to be true (you
may want to use Figure 6.2.2 to help you answer this question):

A 123456 is a very weak password.
B google is a very weak password.
C \zxcvbn,./ is a strong password.
D Ms?niW£si36# is a very strong password.
E 1q2w3e4r5t6y7u8i9o is a very strong password.

There are many free online password strength checkers.
(a) Explain why for security reasons you should avoid using a

password checking service.
(b) Explain how you would choose a strong password so that you

would not need to rely on an online password checking service.

4

5
Key term

Default password:
A default password is a
password assigned to equipment
and software systems for the
administrator’s account, along
with the account’s username,
e.g. admin.
Such default passwords used
by manufacturers and software
systems are not particularly
secret and so systems that
they are meant to protect are
vulnerable to being hacked and
worse they grant the highest
possible access rights.

Did you know?
Linksys®, a manufacturer of
routers, is now using WPA2
passwords which are unique on
each device.

Questions
Explain why generating a one-time password that a user is forced
to reset as part of setting up a device could help to solve the default
password issue.

6

Task

Read the following
article on the failure
to change the default
password:
Webcam spying
disaster: http://www.
telegraph.co.uk/
technology/picture-
galleries/11279102/The-
six-worst-tech-disasters-
of-2014.html?image=1

3

Institution licence - St Martins School Essex

http://www.telegraph.co.uk/technology/picture-galleries/11279102/The-six-worst-tech-disasters-of-2014.html?image=1
http://www.telegraph.co.uk/technology/picture-galleries/11279102/The-six-worst-tech-disasters-of-2014.html?image=1
http://www.telegraph.co.uk/technology/picture-galleries/11279102/The-six-worst-tech-disasters-of-2014.html?image=1
http://www.telegraph.co.uk/technology/picture-galleries/11279102/The-six-worst-tech-disasters-of-2014.html?image=1
http://www.telegraph.co.uk/technology/picture-galleries/11279102/The-six-worst-tech-disasters-of-2014.html?image=1
http://www.telegraph.co.uk/technology/picture-galleries/11279102/The-six-worst-tech-disasters-of-2014.html?image=1

6 Cyber security

296

Misconfigured access rights

A basic underlying principle for securing computer systems and data is the
principle of least privilege. This means that users are only granted those access
rights and permissions they need to perform their official duties, role or work.
Access rights determine, for example, what files may be accessed and in what
modes - read only, read/write, delete, execute; what programs may be run and
whether the user may install programs; what operating system commands may
be run, e.g. none, a restricted subset, all including the most powerful.
Access rights are misconfigured when user accounts have incorrect permissions
granting them the authority to do things that they shouldn’t be allowed to do.
For example, less restrictive access rights and permissions might be granted in
error to a user of insufficient status or trust allowing the user to do any of the
following and more:

• to run executables
• to read data belonging to a certain account
• to run powerful operating system commands which could

compromise a computer or computer network, etc.
The consequences could be, for example, that private information such as
employee records, customer data, medical records, student records, passwords,
etc, could be accessed and passed on. This is not only a security breach but
also potentially breaks legislation, e.g. the Data Protection Act 1998 (and its
replacement in 2018 the GDPR) - “Data should be kept secure: Appropriate
technical and organisational measures shall be taken against unauthorised or
unlawful processing of personal data and against accidental loss or destruction
of, or damage to, personal data”.

Also, if the user was a disgruntled employee, more damage might be done
to the business with an incorrect elevated level of access such as granting the
power to delete, or read and possibly leak important files.

A hacker could exploit a user’s elevated access rights and do harm to the system
or take over the system in both cases by gaining access to the user’s account
which might not be so well protected, e.g. by a strong password or two-factor
authentication, as user accounts belonging to users with higher status within
the organisation, and therefore elevated access rights.

Key fact
Removable media and
malware:
Removable media can be a
source of malware which can
infect a computer system.

Key term
Misconfigured access rights:
Misconfigured access rights
occur when user accounts have
incorrect permissions.
A user whose status dictates
that they should have restricted
access rights could have been
granted less restricted access
rights by mistake.
This could cause problems.
For example, less restrictive
access rights could grant access
to private information which
the user does not have authority
to view.

Key principle
Least privilege principle:
To reduce the likelihood of a
data security breach or harm
being done to a computer
system requires policies and
procedures to be implemented
and maintained based on the
least-privilege principle.
The least-privilege principle
means that users should be
given only the minimum access
to sensitive data or computer
system necessary to perform
a job function and that access
should only be granted for the
minimum time necessary.

Questions
Which of the following statements are always true?

A The principle of least privilege states that users are only granted those access rights and permissions
they need to perform their official duties.

B Access rights determine, among other things, what files may be accessed.
C Misconfigured access rights occur when user accounts have correct permissions.
D A network manager of a school’s computer network would be granted full access rights.
E Misconfigured access rights occur when user accounts have incorrect permissions.

7

Institution licence - St Martins School Essex

6.2 Social engineering threats

297

Removable media
An infection of Manchester City Council’s IT system caused an estimated
£1.5m worth of disruption in February 2009. The use of USB flash drives was
banned, as this was believed to be the cause of the initial infection.
Care in dealing with external devices is necessary because of the threat
of malware infection by means of AutoRun and external drives/media.
Malware infection of computer systems by Autorun and USB flash drive was
documented in a 2011 Microsoft study3. The study found that 26 percent
of all malware infections of Windows systems were due to USB flash drives
exploiting the AutoRun feature in Microsoft Windows.
AutoRun, and the companion feature AutoPlay, are components of the
Microsoft Windows operating system that dictate what actions the system takes
when a drive is mounted, e.g. a CD-ROM or a USB flash drive.
An entry in the Windows Registry controls whether AutoRun is enabled or
disabled for a particular drive.
If AutoRun is enabled then a text file autorun.inf, if present, is opened and
any commands present are executed. Such commands include very powerful
operating system commands. Figure 6.2.3 shows the contents of a sample
autorun.inf file which tells Windows to run Setup.exe program located in the
CD root folder. Also it specifies that Windows should use the first icon from
Setup.exe to display this CD in Explorer.
Variants of the deadly Conflicker worm are spread
through removable media (e.g. flash drives) exploiting
the AutoRun feature of the Windows operating
system.
The United States Computer Emergency
Readiness Team (US-CERT4) recommends
disabling AutoRun to prevent malware from spreading through removable
media. Figure 6.2.4 shows the result of running Kaspersky Lab software on a
computer with autorun enabled.

If copying to removable media is permitted then the system is potentially open
to confidential information being stolen. The National Security Agency (NSA)
had classified information copied and leaked by Edward Snowden in 2013
without authorization.

3 http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-
2BDEB58211B8/Microsoft_Security_Intelligence_Report_volume_11_English.pdf
4 https://www.us-cert.gov/

Key fact
AutoRun and removable
media:
AutoRun and the companion
feature AutoPlay are
components of the Microsoft
Windows operating system that
dictate what actions the system
takes when a drive is mounted,
e.g a CD-ROM or a USB flash
drive.

Questions
Explain what is meant
by access rights.

Why it is important to
assign access rights to
user accounts?

8

9

Did you know?
Use of autorun.inf commands
to protect music CDs:

An audio CD, that a user would
not expect to contain software
at all, can contain a data section
with an autorun.inf file of shell
commands. Some companies,
such as Sony BMG, have used
this to install their software
that attempts to protect against
copying of the audio tracks.

Information
Worm:
A computer worm is a standalone
malware computer program that
replicates itself in order to spread
to other computers.

Key fact
Removable media and
malware:
Removable media can be a
source of malware which can
infect a computer system.

[autorun]
open=Setup.exe
icon=Setup.exe,1

Figure 6.2.3 autorun.inf
example contents

Figure 6.2.4 Warning message from Kaspersky Lab software

Questions
Why should AutoRun be disabled in computers running a Windows
operating system?

10

Institution licence - St Martins School Essex

http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-2BDEB58211B8/Microsoft_Security_Intelligence_Report_volume_11_English.pdf
http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-2BDEB58211B8/Microsoft_Security_Intelligence_Report_volume_11_English.pdf
https://www.us-cert.gov/

6 Cyber security

298

Unpatched and/or outdated code
Malicious persons can take advantage of unpatched computer vulnerabilities.
Such persons search non-stop for software vulnerabilities to exploit. For
example, software vulnerabilities have been found in outdated or unpatched
versions of Adobe Flash, Oracle’s Java, Microsoft’s SQL Server, Apache web
server, and operating systems such as Android, Windows and Linux.

The cycle proceeds as follows:

Software containing vulnerabilities:
A software vendor releases software that contains security-related bugs.

Malicious persons (or a Government agency, e.g. NSA):
Identify the security-related bugs in the software.

Exploit code:
Malicious persons develop code that can exploit the bugs in the
software.

Vendor response:
The software vendor becomes aware of the situation and issues a patch
to correct the bugs.

User response:
Users apply the patch to their system to make them secure for the time
being.

The Slammer worm which exploited vulnerable versions of Microsoft’s SQL Server was the fastest computer worm
in history. It is estimated that as many as 90% of the vulnerable servers online were infected within ten minutes.
The Slammer worm spread at a time when a patch for the vulnerability it exploited had been available for six
months. Named MS02-039, the patch should have ideally been installed on the vulnerable servers long before the
worm started its chaotic journey across the Internet.

Proper patch management is
very important. Software updates
should be automatically managed,
if possible, so that identified
vulnerabilities are removed before
they can be exploited. Don’t keep
or use out of date software on your
computer, especially if patches
for newly identified bugs are no
longer supported, e.g. Windows XP
operating system.

Figure 6.2.5 shows Kaspersky
Lab software reporting multiple
vulnerabilities in CPython software
installed on a computer system.
The offending sofware was removed
from this computer.

Key term
Software patch:
A software patch is a piece of
software designed to update
a computer program or its
supporting data, to fix or
improve it. This includes fixing
security vulnerabilities and
other bugs.

Did you know
Java and Flash versions on
browsers are most likely
outdated. As a safety measure
many companies uninstall Java
and Flash from browsers.
“Outdated, Unpatched Software
Rampant in Businesses” article
in Threat Post.
https://threatpost.com/outdated-
unpatched-software-rampant-in-
businesses/117976/

Figure 6.2.5 Warning message from Kaspersky Lab software

Institution licence - St Martins School Essex

https://threatpost.com/outdated-unpatched-software-rampant-in-businesses/117976/
https://threatpost.com/outdated-unpatched-software-rampant-in-businesses/117976/
https://threatpost.com/outdated-unpatched-software-rampant-in-businesses/117976/

6.2 Social engineering threats

299

Figure 6.2.6 shows Microsoft Windows 7 update configuration settings screen.

Penetration testing
A penetration test, is a survey, assessment, and test of the security of a given
organization’s computer systems carried out by a penetration tester (pentester)
using the same techniques, tactics, and tools that a malicious hacker would use.

In simpler terms, it is the process of attempting to gain access to resources
without knowledge of usernames, passwords and other normal means of access.

The main differences between a malicious hacker and a pentester are

• A pentester attempts to find security weaknesses in a system but does
not attempt, unlike a malicious hacker, to exploit them only report
them to the owner of the system.

• A pentester has permission, both legal and otherwise, from the owner
of the system that will be evaluated whereas a malicious hacker does
not.

A penetration tester, or pentester, is either an employee of the owner of the
system or an external contractor hired on a per-job or per-project basis.
Pentesters are required to never reveal the results of a test to anyone except those
designated by their client.

Figure 6.2.6 Microsoft Windows 7 update
configuration settings screen

Key points
Strategy for dealing with
vulnerabilities from unpatched and/
or outdated software:
1. Apply patches to fix software with

identified vulnerabilities.
2. Apply patch as soon as it becomes

available.
3. Stop using software identified as

vulnerable until patch becomes
available.

4. Check for software updates regularly
and automatically.

5. Remove outdated software.
6. Consider removing software

altogether if it is not possible to
update automatically

7. Remove software that is no longer
supported because vulnerabilities yet
to be discovered will not be patched.

Questions
Why are software patches required?

(a) Why may software on a computer be vulnerable to attack from attackers with malicious intent?
(b) What needs to be done to improve security against such attacks on vulnerable software?

11

12

Key term
Penetration testing:
A penetration test, is a survey,
assessment, and test of the
security of a given organization’s
computer systems carried out by
a penetration tester (pentester)
using the same techniques,
tactics, and tools that a
malicious hacker would use.
In simpler terms, it is the
process of attempting to gain
access to resources without
knowledge of usernames,
passwords and other normal
means of access.

Institution licence - St Martins School Essex

6 Cyber security

300

White-box penetration testing
The aim of white-box penetration testing is to quickly detect problems and fix
them before an external party locates and exploits them.
It is commonly performed by internal teams who simulate a malicious insider
with full knowledge of the structure and makeup of the target system.
The time and cost required to find and resolve the security vulnerabilities is
significantly less than with the black-box approach.
Black-box penetration testing
Black-box testing is a type of test that most closely resembles the type of
situation that an outside attack presents and is sometimes known as an external
test.
Essentially, the aim of black-box penetration testing is to simulate an external
hacking attack or a cyber warfare attack where the attacker has no knowledge of
any credentials for the target system.
To perform this test a pentester will execute the test from a remote location
much like a real attacker.
The pentester will have nothing other than the name of the company to go on.
The pentester will log and keep track of the vulnerabilities of the system under
test and report on these.

In this chapter you have covered:

 ■ The meaning of the term cyber security and the main purposes of cyber
security

 ■ The following cyber security threats:
• social engineering techniques
• malicious code (malware)
• pharming
• weak and default passwords
• misconfigured access rights
• removable media
• unpatched and/or outdated software

 ■ What penetration testing is and what it is used for.

Key term
White-box penetration
testing:
The aim of white-box
penetration testing is to quickly
detect problems and fix them
before an external party locates
and exploits them.
It is commonly performed by
internal teams who simulate
a malicious insider with full
knowledge of the structure and
makeup of the target system.

Black-box penetration
testing:
Black-box testing is a type of
test that most closely resembles
the type of situation that an
outside attack presents and is
sometimes known as an external
test. Essentially, the aim of
black-box penetration testing is
to simulate an external hacking
or cyber warfare attack where
the attacker has no knowledge
of any credentials for the target
system.

Task
Visit the following site
and explore some of the
world’s biggest hacks:
http://www.
informationisbeautiful.
net/visualizations/worlds-
biggest-data-breaches-hacks/

4

Questions
What is penetration testing?

Which of the following statements are true?

A Black-box penetration testing finds vulnerabilities of a system
more quickly than white-box penetration testing.

B White-box penetration testing is conducted remotely.
C White-box penetration testing uses the full knowledge of the

structure and makeup of the target system.
D Black-box penetration testing simulates external hacking.
E A black-box penetration tester has little knowledge of the target

system to go on.
What is meant by white-box penetration testing?

What is meant by black-box penetration testing?

13

14

15

16

Institution licence - St Martins School Essex

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

301

 ■ 6.2.1 Social engineering

What is social engineering?
Social engineering is the art of manipulating people so that they give up
confidential information. It is a mind game in which social engineers play with
human psychology to gain confidence and win confidential information.
Social engineering is used to realise a number of outcomes:

1. Financial fraud

2. Identity theft

3. Unauthorized access to protected systems.

Social engineering involves tricking a person into divulging confidential
information that may then be used, for example, to gain access to the person’s
computer system, bank account, etc, or to steal their identity and exploit this
theft for financial gain by obtaining, say, a bank loan in the person’s name.
The social engineer sets up and defines a situation where it will seem natural,
normal, or helpful for the person being socially engineered to provide the
requested information or to click the link that’s displayed.
To extract information from the unsuspecting, social engineers rely on creating
a sense of urgency in their victims, so that they will respond immediately and
without thinking. It is human nature to be helpful, to avoid trouble or conflict,
and to try to fix things when they break.

Learning objectives:

 ■ Define the term social
engineering

 ■ Describe what social
engineering is and how it can
be protected against

 ■ Explain the following forms of
social engineering:

• blagging (pretetxting)

• phishing

• shouldering (or shoulder
surfing).

6 Fundamentals of cyber security
6 Fundamentals of cyber security

Information

Accounts used to share files
and images such as Google
Drive, Adobe Creative Cloud,
and Dropbox are the most
effective lures used by social
engineers according to a report,
The Human Factor 2017,
by Proofpoint®, Inc. (www.
proofpoint.com).

Key term

Social engineering:
Social engineering is the art
of manipulating people so
that they give up confidential
information.

Example 1 - The “colonel effect”

The “colonel effect” experiment was conducted by Aaron J. Ferguson at
West Point Military Academy in America. He sent a bogus email message
with the subject heading “Grade Report Problem” to 500 cadets, asking
them to click a link to confirm that the grades on their last grade report
were correct or otherwise to report any problems. The email was signed
Colonel Robert Melville but there was no such colonel at West Point.

Over 80% of recipients clicked the link in the message. In response, they
received a notification that they’d been duped and a warning that their
behaviour could have resulted in downloads of spyware, Trojan horses
and/or other malware.

The “colonel effect” refers to a form of social engineering which exploits
a culture in which an action such as clicking on a link is executed
regardless of its nature because the message purports to come from
an authority figure. It is also known as the “CEO fraud” or “Chief
Executive Officer fraud”.

Institution licence - St Martins School Essex

6 Fundamentals of cyber security

302

Example 2 - Playing on the urgency of addressing a security issue
You are contacted by phone by a person claiming to be from the security department of Microsoft. The
person says that your Microsoft Cloud account’s security has been compromised and they need to ask you
a few questions before the security issue can be fixed. The questions are as follows

1. What is your full name and address?
2. What is your username?
3. Have you ever written down your password where someone else can find it?

Your answers to these questions are
1. Fred Bloggs, 55 Acacia Avenue, Dingley Dell
2. FredB
3. No I don’t need to.

“That is excellent especially the fact that you haven’t written down your password”, replies the person.
“How do you manage to remember your password, I never can says the person?” To which you reply,
“because it is my sister’s first name”. “Ah that is good because we will also need to talk to your sister
because, according to our records, her Cloud account has been compromised as well. To save time and
because the problem needs to be fixed urgently, can you answer the first two questions for her now.” You
are concerned that your sister’s Cloud account is potentially vulnerable so you oblige and supply your
sister’s full name, address and username, after all where is the harm you think to yourself, her surname and
address is the same as mine.
(a) How do you know that the person is genuinely from Microsoft?
(b) How did the person obtain your password?
(c) Why might the person want your username and password for your Microsoft account?

Example 3 - Presenting a situation and then explaining the consequences of delay or inaction.

A person receives the following email message purportedly from Yahoo mail:
“Due to the congestion in the Yahoo mail system, Yahoo mail will shut down all unused accounts. You must
confirm your email by filling out your login information below and then clicking the Reply button. Failure
to do so will result in account suspension.”
This message contains several social engineering tricks:

1. Relying on the tendency of humans to be helpful by reducing account congestion
2. Informing the reader that failure to comply with the request will result in account suspension and

loss of access to their email
3. Giving the reader no choice but to click on the Reply button (a hyperlink to a website),

threatening account suspension for failure to comply
4. A reason why this email has been sent: Account congestion and removal of unused accounts

Institution licence - St Martins School Essex

6.2.1 Social engineering

303

How to protect against social engineering
Protecting yourself from social engineering requires being aware of the potential security risks, and taking steps to
minimise them.

1. Never reveal personal, financial, or other sensitive information over the phone or the Internet.
2. Never reveal any of the usernames and passwords that you use.
3. Never reveal answers to typical security questions. These are often relied on when you reset passwords. For

example, any of the following
a. What is the name of your favourite pet?
b. What is the name of the town/city where you were born?
c. What is your favourite colour?
d. Etc.

4. Be mindful of information that you post on the Internet, and understand that it could be visible to
strangers.

5. If a caller claiming to be from some company, financial institution or organisation asks for confidential
information then always ask for their contact information which you should then verify is real using some
independent and reliable means such as a phone book or the company’s website.

6. Ignore spam and steer clear of clicking links in Tweets, Facebook pages, etc.
7. Remove access to PowerShell code from your user account - PowerShell is a tool that delivers power and

control over the Windows operating system and the underlying hardware.
8. Remove admin rights from your user account so that you cannot have control over the Windows

operating system and the underlying hardware.
9. Disable macros or only use macros that can be trusted, i.e. macros which are digitally signed by a trusted

source.
10. Be wary of rigged Word documents sent to you and which encourage you to “enable content”. This action

could install malware in your computer’s RAM with unfortunate consequences.

Questions
You have just entered your keypad code into an electronic lock to let yourself into the office building
where you are working during your summer holidays. A senior looking person follows you in and says he
is glad that you were around as he had forgotten his keypad code. It would have been very embarrassing
for him to be locked out, he says, as he is late for a meeting with the CEO. He asks you to remind him
what the keypad code is, to save him the hassle of contacting security.

(a) Would you let him in? Justify your answer.
(b) Would you divulge the keypad code to him? Justify your answer.
(c) Would your decision have depended on whether the person carried an air of authority?

You receive an email with subject “Confirm your availability for the first eleven for next Saturday’s football
fixture against Bash Street Academy”.
You are asked in the body of the email to click on a link to confirm your availability or unavailability. The
email is signed Head of Games and nothing else.
The email rings true because according to the fixture list, next Saturday’s game is against Bash Street
Academy and you do play in the first eleven football team.

(a) What about this email might be considered suspicious?
(b) What about this email might be considered authentic?
(c) How might genuine information included in this email have been obtained?

1

2

Institution licence - St Martins School Essex

6 Fundamentals of cyber security

304

Blagging (pretexting)
Blagging, a form of social engineering, is the act of creating and using an
invented scenario to engage a targeted victim in a manner that increases the
chance the victim will divulge information or perform actions that would be
unlikely in ordinary circumstances. For example, you might be contacted by
telephone by someone claiming to be from Microsoft, say, who claims that
there is a problem with your computer. After some discussion they ask for your
username and password. This is a fairly blatant and unsubtle attempt to get you
to reveal information of a sensitive or personal nature. However, the telephone
call could be much more subtle as illustrated in Example 2 on page 302. The
reason why this example might work is that people are easily manipulated
into giving away information if they believe it is in their best interest to do
so, or because they believe they are helping in some way. Especially if the
person claims to be in some position of authority, because the target of the
blag believes that the “attacker” has the right to know - see the “colonel effect”
example on page 301. We have been brought up to answer and work with
authority figures, and not question them!

Shouldering (or shoulder surfing)
Shouldering is observing a person’s private information over their shoulder, e.g.
cashpoint machine PIN numbers.

Key term

Blagging (pretexting):
Blagging is the act of creating
and using an invented scenario
to engage a targeted victim in
a manner that increases the
chance the victim will divulge
information a blagger wants,
e.g. sensitive or personal nature
such as passwords, or perform
actions that would be unlikely
in ordinary circumstances,
making a payment by credit
card to the blagger to fix a
non-existent problem with your
computer.

Key term
Shouldering (shoulder
surfing):
Shouldering is observing a
person’s private information over
their shoulder, e.g. cashpoint
machine PIN numbers.

Questions
A person is contacted by telephone by someone claiming to be from their bank. They say recent activity
on the account leads them to believe that this bank account has been hacked. Before they proceed any
further they would like to ask some security questions. They conversation proceeds as follows
“Bank”: What is your date of birth?
Person: 23/06/1998.
“Bank”: Name one direct debit set up on your account.
Person: Vodaphone.
“Bank”: What are the first and fourth digits of your PIN?
Person: 8 and 9.
Person: Sorry, I didn’t catch that, what did you say are the second and third digits of your PIN?
Person: 3 and 2.
“Bank”: What is your mother’s maiden name?
Person: Smith.
“Bank”: Thank you very much. I can now confirm that your account is secure and it has not been hacked.

(a) What should the person have done to decide whether or not it was safe to proceed with this telephone
conversation?

(b) What confidential information has the person given away that could enable his or her bank account to
be illegally accessed and money to be stolen?

3

Institution licence - St Martins School Essex

6.2.1 Social engineering

305

Phishing
Phishing is a technique of fraudulently obtaining private information, often by
using a legitimate-looking email or SMS in which a lure is dangled in front of
an unsuspecting user of the Internet.
A phishing email or SMS message purports to come from a legitimate and/
or trusted source, e.g. a bank, and attempts to fool you into revealing login
credentials, financial details, and/or sensitive information that can later be used
to commit fraud or access accounts.
Phishing casts a big net to catch a few fish. It uses unsolicited email (spam),
text messages, or other forms of communication sent out in bulk, i.e. to many
people. While many people will dismiss the message, a few will respond to it.

Another phishing technique sends an email containing
a link which you are invited to click on but this time
the recipient of the email is taken to a website page with
an exploit kit. The exploit kit relies on an out of date
browser being used with security vulnerabilities and
which the kit can exploit to download malware.
Once installed, the malware can steal passwords, install a backdoor into the compromised computer or even
encrypt all files on the computer (ransomware).
Many people think phishing is only a credential problem (i.e. usernames and passwords). They believe that
they are safe as long as they don’t enter their credentials after clicking on the phishing link.
This isn’t true as can be demonstrated with the above exploit kit scenario.
In this case, just clicking the link results in your browser and computer being completely compromised.

Scenario 2 - exploiting security vulnerabilities in web browsers

One phishing technique sends an email containing a link
which you are invited to click, say, to reset the password that
you use to login into a service, e.g. gmail.
Clicking this link will take you to a bogus website, that looks
like the real thing, in which you are invited to enter your
username and password.

Of course, this fake web site is designed to collect the
unsuspecting user’s username and password so that the
attacker can gain access to the person’s gmail account and
emails associated with this account.

Scenario 1 - stealing credentials

Key term

Phishing:
Phishing is a technique of
fraudulently obtaining private
information, often by using
email or SMS.

Key term

Spam:
Unsolicited email or messages
that are sent to groups of
people.

Information
Download from KnowBe4 the 22 social engineering red flags to watch out for in any email document:

https://cdn2.hubspot.net/hubfs/241394/Knowbe4-May2015-PDF/SocialEngineeringRedFlags.pdf

Institution licence - St Martins School Essex

https://cdn2.hubspot.net/hubfs/241394/Knowbe4-May2015-PDF/SocialEngineeringRedFlags.pdf

6 Fundamentals of cyber security

306

A trio of terms captures just about every phishing attack: imitate, motivate, and act (click a link, reply to an e-mail,
or whatever).
Imitate: A phishing message strives to look like it comes from some particular organization.
Motivate: Motivation is the social engineering part of a phishing attack.
Act: The visible hook in a phishing attack is the form that users are requested to fill out. To access this form, users
must take action (click a link, send a reply, etc). An invisible hook may also lurk in a phishing attack, i.e. the
phishing page visited may cause a drive-by download of malware. If this happens, even users who don’t bite the
visible hook and fill out the form may still fall prey to the invisible hook if the malware download succeeds. The
victim is then stuck with a keylogger and a backdoor Trojan that he or she may not know about for some time.

When you browse the web, you might see a pop-up ad or a page warning you about a problem with your
device. These alerts are pop-up ads, designed to trick you into calling a phoney support number or buying
an app that claims to fix the issue. Don’t call the number. Simply close the pop-up ad, or navigate away from
that page and continue browsing.

Scenario 4 - pop-up ads

Another phishing technique sends an
email containing a malicious attachment.
Malicious attachments come in many forms,
e.g. Word documents, HTML files, zip files
or even executable programs (.exe, .jar, etc).
The recipient of the email is tricked into
downloading and opening/executing the
attachment.

The most common malicious attachments
are Word (or any Microsoft Office tools)
document files. In this case, the attachments
which are macros contain malicious code.
Malicious macros are typically bits of
code designed to damage the user’s device
(computer) when the code is run. The macro
could execute a command to wipe the entire
contents of a disk or it could execute code
that downloads and executes other malware.
Microsoft knows that letting macros run
automatically is dangerous, so they prompt
you to see if you want to execute the macro.
If you do not trust the source you should
decline or even safer decline full stop!
However, attackers have got “smarter” and
try to trick you by making the document say
something like, “this document is encrypted
for your protection, enable macros to
decrypt the contents.”

Scenario 3 - malicious attachments

Institution licence - St Martins School Essex

6.2.1 Social engineering

307

Antivirus software cannot protect against all malware attacks.

Therefore, computers are not entirely safe from malware, so avoidance, i.e. don’t reply to the email or click the link,
remains the best strategy.

These signs can help you identify phishing scams:

• The sender’s email address or phone number doesn’t match the name of the company that it claims to be
from.

• Your email address or phone number is different from the one that you gave that company.

• The message starts with a generic greeting, like “Dear customer.” Most legitimate companies will include
your name in their messages to you.

• A link appears to be legitimate but takes you to a website whose URL doesn’t match the address of the
company’s website.

• The message looks significantly different from other messages that you’ve received from the company.

• The message requests personal information, like a credit card number or account password.

• The message is unsolicited and contains an attachment.

Questions
The email shown in Figure
6.2.1.1 purports to come from
PayPal, an American company
operating a worldwide online
payments system that supports
online money transfers.
(a) Give two reasons for

thinking that this is a
phishing email.

(b) Give two security risks that
the recipient of this email
could face by clicking on the
link “click here ...”.

(c) What aspect(s) of human
nature do you think that
this phishing email is
exploiting?

Give three signs that can help
to identify phishing scams.

4
service@intl.paypal.co.uk 8 July 2017 at 13.06

To: customer

Resolution of Buyer Complaint Case # PP-001-811-430-813

Hello,

After careful consideration of the evidence provided in the case
detailed below, we have completed our investigation and decided
in favor of the buyer. Under terms of our User Agreement, we have
debited the following amount from your PayPal account as a refund
to the buyer: 450.00 EUR
......
......

Case number: PP-001-811-430-813

Click here to resolve the problem right now
........

Please do not reply to this email. This mailbox is not monitored and
you will not receive a response. For assistance login to your PayPal
account and click the Help link in the top right corner of any PayPal
page
....... Figure 6.2.1.1

5

Institution licence - St Martins School Essex

http://PP-001-811-430-813

6 Fundamentals of cyber security

308

In this chapter you have covered:

 ■ Defining the term social engineering

 ■ Describing what social engineering is and how it can be protected against

 ■ Explaining the following forms of social engineering:

• blagging (pretetxting)

• phishing

• shouldering (or shoulder surfing).

Institution licence - St Martins School Essex

309

 ■ 6.2.2 Malicious code

Malware
Malware is any software that’s installed on a computer with the intention of
executing malicious code and/or causing damage such as corrupting data.
In the UK, under the Computer Misuse Act, it is criminal offence, punishable
by imprisonment for up to 10 years, to develop malware and/or disseminate
malware.
Figure 6.2.2.1 shows a list of all processes loaded into the RAM of a Windows
XP computer. A process is an instance of a program in execution.
This list shows that three instances of an executable program lsass.exe have been
loaded into RAM.
Each process has its own identifier called its PID (Process IDentifier).
For example, the first copy of lsass.exe has PID 680.
A process started by another process will have a Parent Process IDentifier or
PPID. For example, the first copy of lsass.exe has a parent whose PID is 624,
the second and third 668.
This is suspicious because lsass.exe should always be started by
winlogon.exe and winlogon.exe has PID 624. The second and third copies of
lsass.exe have PID 668 which is an instance of the program services.exe!

Learning objectives:
 ■ Define the term ‘malware’
 ■ Describe what malware is and
how it can be protected against

 ■ Describe the following forms of
malware:

• computer virus
• trojan
• spyware.

6 Fundamentals of cyber security
6 Fundamentals of cyber security

Information
lsass.exe:
This is a program that runs as
a process that is responsible for
enforcing the security policy
on the system. It verifies users
logging on to a Windows
computer or server, handles
password changes, and creates
access tokens.

Figure 6.2.2.1 A list of processes (instances of executing programs) in a Windows XP machine

OK

Suspicious

Hexadecimal address in
RAM of start of process

Institution licence - St Martins School Essex

6 Fundamentals of cyber security

310

Suspicion is raised further on examining the dynamic linked libraries used by the first of the suspect copies of
lsass.exe. The list shown in Figure 6.2.2.2 is not the list for the correct version of lsass.exe. When probed further,
the malicious code shown in Figure 6.2.2.3 is found. This code has the normal permissions associated with the
correct lsass.exe of being able to execute and read but it also has a write permission which it shouldn’t have. In fact,
this computer has been infected with the Stuxnet malware (Stuxnet is a computer worm), a piece of malicious code
designed to damage equipment called a centrifuge operated by the computer.

Key term
Malware:
Malicious computer software
designed to do any of the following
• Alter in a harmful manner

the way that your computer
operates, e.g. reformats the
hard drive on start up

• Enable information to be
captured especially if it relates
to security, e.g. passwords

• Take over your computer for
purposes such as launching
attacks on other computers or
sending spam mail to other
computers.

Figure 6.2.2.2 A list of dynamic linked libraries for the
suspicious copy of lsass.exe

The legitimate lsass.exe requires
only PAGE_EXECUTE_READ
to operate

This code shown in assembly language form
has been injected into lssas.exe. It is the code
for the Stuxnet malware. This malware infected
computers controlling the operation of centrifuges
used by Iran in its nuclear bomb programme.
Stuxnet destroyed up to 1000 of these centrifuges
setting back the programme by 2 years.

Figure 6.2.2.3 Exposure of the
malicious code of the Stuxnet
malware

Task
Take the cyber security challenge VOLATILE
SITUATIONS at https://www.cybergamesuk.com/.
This game emulates the process of using open source
software called Volatility to analyse a memory dump
(copy of the contents of RAM) and find evidence of
malware.

1

Institution licence - St Martins School Essex

https://www.cybergamesuk.com/

6.2.2 Malicious code

311

Virus
What is a virus?
A virus is a particular form of malware.
A virus is a self-replicating piece of software that, like a biological virus,
attaches itself to another program, or in the case of macro viruses, to another
file. The virus is only run and copied when the program it is attached to is run
or the file it is attached to is opened.
If the program or file isn’t accessed in any way, then the virus won’t run and
won’t copy itself.
Program virus

In 1982 a virus labelled the Elk Cloner was written to attack the Apple II
operating system. This virus ran whenever a computer was started from an
infected floppy disk, and would infect with a copy of itself any other floppy
disk put into the disk drive. This virus was attached to a program that ran
every time the computer was booted from the infected floppy disk.
The Stuxnet malware was attached to a copy of the operating system program
lssas.exe.
Viruses can have harmful effects, ranging from displaying irritating messages
to stealing data or giving other users control over your computer.
For example, the virus Elk Cloner displayed a message every 50 times the
computer was started.
Document virus
Document viruses do their
damage via a macro attached to
a document.
Figure 6.2.2.4 shows one way
to create a macro in Visual
Basic for Applications (VBA).
The VBA code executes when
the Word document containing
this macro, Test2.docm, is
opened in Microsoft Word.
This results in a popup window
appearing for 5 seconds on top
of the opened Word document
as shown in Figure 6.2.2.5.

VBA language statements would be written in the coding window shown in
Figure 6.2.2.4.

Information
Floppy disk:
A floppy disk is a removable
storage device that is little used
now. It is based on similar
technology to magnetic disk
storage technology.

Key term
Virus:
A virus is a self-replicating piece
of software that, like a biological
virus, attaches itself to another
program, or in the case of a
macro virus, to another file.
The virus is only run when the
program it is attached to is run
or the file it is attached to is
opened.
If the program or file isn’t
accessed in any way, then the
virus won’t run and won’t copy
itself.

Figure 6.2.2.5 PopUp window that
appears on top of opened Word
document Test2.docm

Figure 6.2.2.4 Shows a VBA coding window for creating code to embed in a
Word document and which executes when the Word document is opened

Test2.docm

Test2

Test2

VBA code written in this window
The actual code which creates a pop-up window
has been hidden

Institution licence - St Martins School Essex

6 Fundamentals of cyber security

312

Email virus

This is illustrated by a Word document + VBA macro delivered by email as shown in Figure 6.2.2.6.
The document Test2.docm attached to the email contains the VBA macro.

The macro executes when document Test2.docm is opened unless the user of the document takes steps to prevent
the macro running. Although this macro is relatively benign there are operating system commands it could run
which have the potential to wreak havoc. The macro then becomes a virus, a piece of malicious code.
A macro virus author can program the macro to do almost anything that is possible with a
PC.
For example, it can corrupt data, send files across the Internet, send a copy of itself by email
to other email accounts and format hard drives. The punishment for writing and distributing
viruses is prison for a very long time!
A macro virus can be written to attach itself to Microsoft Word via one or more Word’s document templates, e.g.
Normal.Dot thereby infecting every document subsequently opened in Word.
A macro virus can also be written to search the infected computer for files containing email addresses and then
using these send a copy of itself to new recipients. Typically, such email viruses rely on people double-clicking on
an attachment to distribute themselves automatically. Any attachment that you receive by email could carry a virus;
and launching such an attachment could infect your computer.
One step that you could take is to disable macros or at least configure your computer to request confirmation before
proceeding to open a document containing one of more macros.
Another is to use anti-virus software which scans a program/file for tell-tale signs of malicious code.

Figure 6.2.2.6 Email with Word document attachment

Information
In the UK, under the
Computer Misuse
Act, it is a criminal
offence, punishable by
imprisonment for up
to 10 years, to develop
malware and/or
disseminate malware -
http://www.legislation.
gov.uk/ukpga/1990/18

Institution licence - St Martins School Essex

http://www.legislation.gov.uk/ukpga/1990/18
http://www.legislation.gov.uk/ukpga/1990/18

6.2.2 Malicious code

313

Questions
 Which of the following statements are true.
A A computer virus is a form of software bug which can cause errors when executed.
B A computer virus does not need to be embedded in another program or document to spread or to

wreak havoc in a computer system.
C A computer virus is a type of malware.
D A computer virus spreads when the software or document file it is attached to is transferred from one

computer to another.
E A computer virus inserts a copy of itself into another program or document.

Explain why one needs to be careful when opening an email attachment.

It is believed that the Stuxnet malware infected the computers controlling the Uranium enrichment
process when they were hooked-up to a Windows-based tablet computer for diagnostic purposes.
Infection via the Internet was not possible since the computers were not connected to the Internet.
What measure or measures could have been taken to reduce the likelihood of the computers becoming
infected with a virus?

1

2

3

Trojan
A Trojan or Trojan horse is a program that pretends to be legitimate software, but actually carries hidden, harmful
code.
A Trojan program claims to have one function (and may even carry out this function), e.g. it claims to be a game
program, but it actually also does something harmful as well behind the scenes.
For example, Trojan horse software could be created by using a wrapper to bundle together legitimate software, a
game, with two other files intended to do harm, into a single file, NoughtAndCrosses.exe, and to make this game of
noughts and crosses available for download from a Web site, www.madeupdomainname.co.uk.

The three files could be

1. DodgyScript.vbs

2. OandXs.exe

3. SetUpTrojan.vbs

Files with extension .vbs are VBScript files. SetUpTrojan.vbs does what it says.
It copies the malicious code file DodgyScript.vbs to the root directory of the
C: drive. It inserts an entry into the computer’s registry to ensure that the copy
of DodgyScript at C:\ runs whenever the computer is started. The downloaded
copies of DodgyScript and SetUpTrojan are then deleted from the download
directory. Finally, it causes the game executable OandXs to run.

NoughtsAndCrosses.exe would be uploaded, say, to a directory games located
within the Web site

www.madeupdomainname.co.uk.
The game + Trojan would be downloaded by clicking on the following
download link

www.madeupdomainname.co.uk/games/NoughtsAndCrosses.exe
The next time that the computer starts, DodgyScript runs. This script may then
download more malware, e.g. a keylogger.

Key term
Trojan:
A Trojan or Trojan horse is a
program that pretends to be
legitimate software, but actually
carries hidden, harmful code.
Once the Trojan is run, it adds
a part of itself to the computer’s
startup routine. This part can
then run when the computer
is started up. A form of Trojan
called a backdoor Trojan allows
the person who sent the Trojan
to run programs on the infected
computer, access personal files,
modify and upload files. track
the user’s keystrokes, or send out
spam mail.

Institution licence - St Martins School Essex

http://www.madeupdomainname.co.uk
http://www.madeupdomainname.co.uk
http://www.madeupdomainname.co.uk/games/NoughtsAndCrosses.exe

6 Fundamentals of cyber security

314

Alteration of the computer’s Windows registry to allow DodgyScript to run whenever the computer is started
requires that the user downloading the game + Trojan has admin rights.

Admin rights grant full access to all parts of the system.
Therefore, one strategy to prevent Trojan malware infecting a computer and potentially a network is to remove
admin rights from ordinary users.
Possible vectors for a Trojan are

1. Email attachment
2. Link within the body of an email (email link)
3. Visiting a Web site (Web site drive-by) and downloading the Trojan.

The following can be used to protect against these three methods of attack

1. Use email filtering - blacklist of links to be avoided, emails with exe
attachments blocked

2. Use up-to-date antivirus software to recognise the signature of the
Trojan, if possible

3. Use Web filtering - keep a blacklist of Web sites to be avoided
4. User security awareness training -

a. Don’t click on email links without checking with the source that
email is genuinely from a trusted source

b. Don’t download email attachments without checking with the source
that email is genuinely from a trusted source

c. Don’t Web surf and click on download links, only download from
trusted sites.

Information
Malware vector:
A vector in computing,
specifically when talking about
malicious code such as viruses,
trojans and adware, is the
method that this code uses
to propagate itself or infect a
computer.

Questions
 Which of the following statements are true.

A A Trojan is a kind of virus.
B A Trojan is a kind of malware.
C A Trojan or Trojan horse is a program that pretends to be

legitimate software, but actually carries hidden, harmful code.
D Removing administrator rights from ordinary users can make it

more difficult for a Trojan to infect computers.
E A Trojan program claims to have one function but it actually also

does something harmful as well behind the scenes.

State three measures other than user security awareness training that
could be used to protect against downloading a Trojan.

State three things that users should avoid doing when using
computers in order to minimise the chance of downloading a Trojan.

4

5

6

Information
Definition-based (or signature-
based) antivirus compares
the signatures (MD5 or SHA-1
hashes) of the files encountered
to see if they match a list of
known malware.
Typically, when signature-based
antivirus software encounters
a signature match, the file is
quarantined.
Cyber criminals writing
malware exploits such as Trojans
know their malware may
encounter antivirus software,
so they frequently include
malicious code that disables the
antivirus software. In one highly
specialized attack in May 2016,
the presence of the antivirus
software was used to actually
install malicious code.
https://www.digitalshadows.com

Institution licence - St Martins School Essex

https://www.digitalshadows.com

6.2.2 Malicious code

315

Spyware
Spyware is software installed in a computer to monitor the activities of its user
and to report the gathered information to a third party, who may or may not
have criminal intentions.
Spyware may be used, for example, to

• track the user’s browsing activities
• log, using a keylogger, what is entered through the computer’s

keyboard
• obtain passwords using a piece of software called a password sniffer
• send collected data to a particular email address or server.

Tracking cookies may be used to store information about the user on their
computer, and to send this information to advertisers or to third parties who
may or may not have criminal intentions.
Spyware is a threat to a computer user’s privacy but worse, if the spyware has
been installed by cybercriminals then the computer’s security may be breached.
Sensitive information such as bank login details may be stolen and used to
obtain money illegally from the computer user’s bank account or used by a
command and control server (C2) to take over the computer for the purposes
of sending spam mail or engaging in a distributed denial of service attack.
Figure 6.2.2.7 shows an example in which spyware in the form of a keylogger
is downloaded when an unsuspecting user clicks on the email link.
The user is taken to the bank’s site Bank of Umo but only after a keylogger and trojan malware have been
downloaded to the user’s computer. Closer inspection of the web link reveals that the domain name used is
bankofurno.com and not the genuine domain name bankofumo.com. The trojan software periodically or under
command from a command and control server sends a log of keystrokes to the cybercriminal.

Key term
Spyware:
Spyware is software that enables
advertisers or cybercriminals to
gather information without your
permission.
You may get spyware on your
computer when you visit certain
websites. A pop-up message
may prompt you to download
a software utility that you
“need”, e.g. a disk cleaner, or
software may be downloaded
automatically without your
knowledge. Spyware may also be
installed when you click on an
email link.
Spyware programs are not
viruses. Cybercriminals often
use a Trojan horse to install
spyware.

Email to
victim

Malware server

Malware Incorporated Sales Catalogue
1. Zeus - our very popular combined
 keylogger and trojan
2. Geinimi - our popular Android trojan
3. Etc......

Victim

Keylogger records
victim’s activities, i.e.

every key press

40 years in some
countries

Clicking link https://con�rm.bankofurno.com
contacts server

Keylogger and
Trojan software

then downloaded

Trojan periodically sends
keylog to

cybercriminal.
Keylog contains, for example,

credit card details

Bitcoin payment via Tor for the use
of malware service

From accounts@bankofurno.com
To gullible@willclickanylink.com

Dear Customer
You are due a refund of £100.
To transfer this to your account click on
the following link
 https://www.bankofurno.com

Yours

Art Dodger
Senior Accounts Manager

1

2

4

3

6

5

Cybercriminal

Cybercriminal goes to jail for
a very long time

Crime as a Service (CaaS)

Figure 6.2.2.7 Download
of keylogger together with
Trojan malware to send log to
cybercriminal

Institution licence - St Martins School Essex

6 Fundamentals of cyber security

316

Spyware may be removed or prevented from infecting your computer with antispyware software, e.g. Spybot from
www.safer-networking.org is one of several free antimalware and antispyware tool. Many antiviruses also include a
antispyware tool.

If the spyware is delivered via a Trojan then the measures taken against Trojans also apply to spyware.

In this chapter you have covered:

 ■ The term ‘malware’

 ■ Describing what malware is and how it can be protected against

 ■ The following forms of malware:

• computer virus

• Trojan

• spyware.

Question
Which of the following statements are true.

A Spyware is a kind of virus.
B Spyware is not a threat to a computer user’s privacy.
C Spyware may obtain passwords using a piece of software called a password sniffer
D Spyware is software that enables advertisers or cybercriminals to gather information without your

permission.
E Spyware may take the form of a keylogger.

Task
Write an article for a student magazine on malware and the different types of malware: computer viruses,
Trojans, and spyware. Your article should describe the similarities and differences between each and the
measures that can be taken to reduce the risks posed by each of these.

7

2

Institution licence - St Martins School Essex

http://www.safer-networking.org

317

 ■ 6.3 Methods to detect and prevent cyber security threats

Biometric measures
Biometric authentication uses your body as your “password”.
Instead of the “password” being something that you know, it is something
physical and unique that you possess such as

• fingerprint pattern
• iris pattern
• retina pattern
• facial features
• voice pattern
• vein pattern of palm of hand.

The following technologies have been developed which exploit the above to
uniquely identify a user:

• fingerprint scanner
• iris scanner
• retina scanner
• facial recognition
• voice recognition
• vein recognition.

Biometrics, however, are not fail-safe. For example, both fingerprint scanning
and facial recognition systems have been fooled already.
Unfortunately, the consequences are more severe if a biometric system has been
cracked because users can’t change their fingerprint or facial features as they can
a stolen password.
However, biometric authentication is still currently more secure than weak
passwords.
Experts advise that the best approach is to use a combination of biometric
technology and other security measures, such as a strong password (the first
factor) in a two-factor authentication process which uses a PIN as the second
factor.
Mobile devices are so numerous today that much attention is now devoted to
securing them especially from hackers and the consequences of a device being
lost or stolen. This is especially important given the rise of mobile phone apps
such as Apple Pay, Android Pay, and Samsung Pay, that can make payments.
Apple Pay, for example, uses fingerprint scanning to verify the identity of the
user before allowing a transaction to proceed via the user’s mobile phone.

Learning objectives:

 ■ Understand and be able to
explain the following security
measures:

• biometric measures
(particularly for mobile
devices)

• password systems

• CAPTCHA (or similar)

• using email
confirmations to confirm
a user’s identity

• automatic software
updates.

6 Fundamentals of cyber security
6 Fundamentals of cyber security

Key term
Authentication:
The process or action of
verifying the identity of a user
or process.

Information
Biometrics:
The term biometrics is derived
from the Greek bio (life) and
metric (measure).

Did you know?
The structure of vein patterns is
unique amongst each and every
individual. Scientific studies
have shown that identical twins
possess unique vein patterns as
well.
It is also very difficult to spoof a
Vein Pattern Recognition device
because a constant flow of blood
is required in the veins for the
raw images to be captured.
However, vein pattern can
change over the lifetime of an
individual and therefore, re-
registration will be needed.

Institution licence - St Martins School Essex

6 Fundamentals of cyber security

318

Password systems
Passwords have already been covered in some depth in Chapter 6.2 (page 293).

There are systems called password managers that manage passwords for users and ease the task of following these
guidelines for passwords:

• passwords should be strong and unguessable

• a different password should be used for each system.

A typical password manager remembers your credentials (login name and password) and then offers to fill in these
for you when logging in again to the corresponding online account or system, e.g. a website or an application.
It therefore eases the burden of having to remember a different password for each system that you log into.

It may also include a password generator which can generate securely-long and random passwords for you.

Another way to ease the burden of remembering lots of passwords is to rely on a single password for all the online
accounts or systems that you need to login to.

For example many systems allow you to use your Facebook or Google login credentials but now you are relying on
your Facebook or Google account credentials remaining secure. If these credentials are hacked then all your sites
where you have used your Facebook or Google credentials will also become insecure.

Also, linking two or more sites allows companies to collect more data, and more information about you which
becomes a possible privacy issue for you. Some commentators advise caution because they say the main focus of a
social network company is making a profit from your information, not protecting your privacy.

There’s also a possibility that less scrupulous sites may do something else with your data that you didn’t agree to,
e.g. selling it on to another company that you would not wish to have access to any aspect of your online identity.
Before using your existing social account to sign in to a third-party site, make sure you can trust the third party.

Questions
State two biometric measures that could be used to verify the identity of a user of a mobile phone system.1

Questions
Which of the following statements are true of a typical password manager?
A It remembers your credentials for each password-protected system that you log into.

B It forces you to use the same password for all the systems that you log into.

C It eliminates the need to use a password at all.

D It offers to fill in your credentials for you when logging in again.

E A typical password manager may include a password generator.

It is possible to rely on your Facebook or Google credentials as log in credentials for other websites.

State one advantage and one disadvantage of doing this.

2

3

Institution licence - St Martins School Essex

6.3 Methods to detect and prevent cyber security threats

319

CAPTCHA

The term CAPTCHA (Completely Automated Public Turing Test To Tell
Computers and Humans Apart) was coined in 2000 by Luis von Ahn1 and
others at Carnegie Mellon University for a technique that attempts to protect
websites against Internet bots (or just bots).
A bot is a software application that runs automated tasks over the Internet,
e.g. a bot that distorts the outcome of an online poll by voting automatically
thousands or more times.
Luis von Ahn and his fellow workers created an anti-bot program called a
CAPTCHA which determined if a test, set by the program, is answered by a
human or another computer program (a bot).
Their CAPTCHA program generated an image comprised of several randomly
selected and distorted characters as shown in Figure 6.3.1.

In order to gain access to a CAPTCHA protected site, users must prove that
they are human and not a computer by correctly deciphering and retyping
the characters.
At the time that CAPTCHAs were introduced, computers could not process
distorted images and text as well as humans could. Therefore, CAPTCHAs
immediately proved effective at frustrating most automated attacks.

Eventually, though, hackers and spammers figured out ways to outsmart the
technology by creating programs capable of reading and cracking CAPTCHAs.
To counter this, the CAPTCHA technique was beefed up with monitoring
software which analyses the user’s entire engagement with the CAPTCHA - IP
address, mouse movement, etc... - to differentiate between a human user and
an abusive bot. This form of CAPTCHA has been renamed No-CAPTCHA.

Users now see a check box that humans just check and in most cases, they pass
the test - Figure 6.3.2.

1 Luis von Ahn, Manuel Blum, Nicholas Hopper and John Langford

Did you know?
Several years after introducing
the world to CAPTCHA
technology, von Ahn realized
that, despite taking just a few
seconds to type a CAPTCHA,
humans were spending
hundreds of thousands of hours
each day typing in more than
100 million CAPTCHAs.
CAPTCHAs were re-purposed
as reCAPTCHA technology to
use this time to decipher words
tagged as unreadable in the
digitizing of books and other
printed material.
In just the first year after
launching reCAPTCHA,
humans correctly deciphered
and transcribed more than 440
million words, roughly the
equivalent of 17,600 books.

Information
Spammer:
A person or organization that
sends irrelevant or unsolicited
messages over the Internet,
typically to large numbers
of users, for the purposes of
advertising, phishing, spreading
malware, etc.

Figure 6.3.1 Example CAPTCHA test

Key term
CAPTCHA:
A CAPTCHA is a program
which attempts to determine
if a test, set by the program,
is answered by a human or
another computer program.
In its original form, the test
required several randomly
selected and distorted
characters, generated by the
program, to be deciphered and
entered correctly. For success
it relied on the fact that, at the
time, computers/computer
programs could not process
distorted images and text as well
as humans could.

Figure 6.3.2 Example No-CAPTCHA

Institution licence - St Martins School Essex

6 Fundamentals of cyber security

320

If the user engagement check can’t confidently predict whether a user is a
human or an abusive bot, it will prompt a more challenging CAPTCHA
such as a test that shows the user a picture of a cat and asks for similar
photos to be selected from a grid of photos as shown in Figure 6.3.3.

Figure 6.3.3 Example picture test
CAPTCHA

CAPTCHAs
Protect against spam and abuse

Abusing online polls: If the result of an online poll is to be trusted
then it must ensure that only humans can vote. CAPTCHAs force
auto-polling hackers to type in CAPTCHAs by hand and thereby
reduce the hackers’ attempts to manipulate poll results.

Abusing free email services: companies such as Yahoo offer free email
services. CAPTCHAs are used to prevent a bot attack that signs up
for thousands of email accounts every minute.

Spam: CAPTCHAs are used against email spam: “I will only accept
an email if I know there is a human behind the other computer.”

Questions

Which of the following statements are true of the latest form of CAPTCHAs?

A A CAPTCHA can help to prevent tickets for a sporting event being bought thousands of time by a
bot created for this purpose by ticket touts.

B A CAPTCHA can be used by a user as a direct replacement for a login password.

C CAPTCHAs can be used to detect viruses in downloaded files.

D CAPTCHAs can help to reduce the effects of automated voting in an online poll.

E A form of CAPTCHA can help to decipher words tagged as unreadable in the digitizing of books.

Many people post comments on blog websites in response to the websites’ blog articles. Such articles can
also attract bot-posted comments which advertise products. State one technique that could be used to
thwart such bots and explain what it relies on to be successful.

4

5

Institution licence - St Martins School Essex

6.3 Methods to detect and prevent cyber security threats

321

Using email confirmation to confirm a user’s identity

Verifying identity is very important. For example, an account holder or user
of an online account who cannot gain access to this account because they have
forgotten their access password should be able to verify their identity to the
system by some other means and then once verified be allowed to reset their
password.

One such method uses
the account holder’s email
address to confirm their
identity. This email address
would have been supplied at
the time that the account was
set up.

The account holder clicks on
a Forgot password link on the
login page. The hyperlink
takes the account holder to
a page where they can enter their email address
- Figure 6.3.4. The entered email address is
checked against the email address recorded
against this account. If matched then an email
addressed to the account holder is sent which
contains a password reset link - Figure 6.3.5.

An expiry date/time is usually applied to the
password reset link so that it cannot be used
after a certain time period. Other restrictions are
also applied to this link such as

• it may only be used once
• it can no longer be used if superseded by a new link.

When a new user fills out an online registration form to apply to register an
account, an email is often sent to the new user’s supplied email address. This
email can contain a link that the new user is required to click to complete
registration and activate their account. Alternatively, it may contain a registration
code that the user is then required to type into the registration page to confirm
their identity. If this checks out then the user’s account is activated.

Requiring a user to click a confirmation link in their email reduces the likelihood of spambots registering an
account.

Key term
Verification:
The process of establishing the
truth, accuracy or validity of
something.

someaccount@someaccount.co.uk
To: Fred Bloggs
You have requested to change your password

11th July 2017 at 13.51

Fred Bloggs, to reset your password, please visit

You have requested to change your password - Inbox

http://someaccount.co.uk/passwords/fgg06wc3qzhon345radkle56ssojge45ert93782/edit

C

Figure 6.3.5 Email with password reset link

Figure 6.3.4 Forgot your password?

Questions
Explain how email may be used to confirm an account holder’s identity when the account holder makes a
request to reset their password.

6

Information
Spambot:
A spambot is a computer
program designed to assist in
the sending of spam. Spambots
usually create accounts and send
spam messages with them.

Institution licence - St Martins School Essex

http://Forgot password

6 Fundamentals of cyber security

322

Automatic software updates
Unpatched and/or outdated software is vulnerable to being exploited by malicious persons as described in detail in
Chapter 6.2 (page 298).

It is therefore important to check for software updates regularly and automatically so that vulnerabilities may be
fixed as soon as patches or updates become available. You should select the install updates automatically option
and not choose to install updates manually. It is very easy to forget to install updates or to delay applying updates
leaving the system vulnerable.

In this chapter you have covered:

 ■ The following security measures:

• biometric measures (particularly for mobile devices)

• password systems

• CAPTCHA (or similar)

• using email confirmations to confirm a user’s identity

• automatic software updates.

Institution licence - St Martins School Essex

323

 ■ 7.1 Relational databases

What is a database?
In the early days of computerised data processing, a company's data was
duplicated in separate files for the use of individual departments.
For example, the personnel department (now often called human resources)
would hold details on name, address, qualifications, etc of each employee,
while the payroll department would hold details of name, address and salary of
each employee. Each department had its own set of programs (applications) to
process the data in these files. This led to

• duplicated data, meaning wasted space
• inconsistency problems, where, for example, an address was updated on

one file but not on another
• the data was not shareable: if one department needed data that was held

by another, it was awkward to obtain it.
In an attempt to solve the above problems, the data from the various
departments was centralised in a common pool so that all applications had
access to the same set of data. For example, all the details of stock held by a
builders merchant would be held in a database which was accessible by all
applications using the data. The sales system would update quantities in stock,
the marketing department would use the data to produce a catalogue, the
reorder system would use it to decide what stock to reorder.

A database, therefore, is defined as a collection of non-redundant data
shareable between different application systems.

What is a relational database?
In a relational database, the data is held as a collection of tables. Figure
7.1.1 shows a snapshot of some data stored in two tables within a hospital
relational database. Other tables within this database are not shown.

Learning objectives:

 ■ Explain the concept of a
database

 ■ Explain the concept of a
relational database

 ■ Understand the following
database concepts:

• table
• record
• field
• primary key
• foreign key

 ■ Understand that the use
of a relational database
facilitates the elimination of
data inconsistency and data
redundancy.

7 Relational databases and structured query language (SQL)

and structured query language (SQL)
7 Relational databases

PatientNo Forename Surname Gender DateOfBirth
1456 Fred Smith M 1/3/1970
1461 Mary Berry F 18/5/1965
1468 Abdul Ali M 11/10/1981
1472 Sui Wang F 27/11/1999

Field name/attribute (name)

Field value or datum

Record

WardId WardName WardType NoOfBeds
1 Nightingale Orthopaedic 30
2 Barnard Cardiac 25
3 Seacole Medical 35
4 Guttman Geriatric 30

Table

Figure 7.1.1 Collection of tables - Patient table
and Ward table - which belong to the hospital
relational database

Non-redundant means no
unnecessary duplication

Key concept
Database:
A database is a collection
of non-redundant, logically
related data, and a description
of this data, shareable between
different application systems.

Institution licence - St Martins School Essex

7 Relational databases and structured query language (SQL)

324

• The two tables in the hospital relational database are named Patient and Ward,
respectively

• Each table consists of a number of rows
• Each row is called a record
• Each record has a number of fields and each field has a field

value, e.g. 'Nightingale'
• Each column of a table has a name, e.g. PatientNo, which is

called a field name or attribute/attribute name or just field.
For example, in the table Patient, there is a record with the value
'Nightingale' for field WardType.

Modelling a relationship between two tables
The relationship between patient and ward is modelled in a relational database by shared or common fields/
attributes. Figure 7.1.2 shows how this is done using field/attribute WardId.

Although the tables Patient and Ward contain multiple records for patient and ward, it is a convention to use the
singular form to name the respective table.

The tables, in fact, record information about the entities
patient and ward.
An entity is an object, person, place, relationship,
concept, activity, event or thing of interest to an
organisation and about which data is recorded.

Questions
 What is

(a) a database?
(b) a relational database?

For the table Patient, Figure 7.1.1,
give one example of

(a) a field name
(b) a field value in the second record.

(a) Table 7.1.1 records patient information,
patient no, patient name, which ward they are in and the ward type.
In what way does this table contain redundant (unnecessary duplication) data?
(b) Split this table into two separate tables, ensuring that each new table contains no redundant data (it

may still contain some duplication) while preserving the link between patient and the ward that the
patient is assigned to.

(c) Do any of your new tables contain duplication and if so, is it necessary duplication?

1

2

3

PatientNo PatientName WardName WardType
1456 Smith Nightingale Orthopaedic
1461 Berry Barnard Cardiac
1468 Ali Barnard Cardiac
1472 Wang Guttman Geriatric
1478 Banderjee Barnard Cardiac
1483 Noggs Nightingale Orthopaedic
1497 Fadhil Nightingale Orthopaedic

Table 7.1.1 PatientWard table

PatientNo Forename Surname Gender DateOfBirth WardId
1456 Fred Smith M 1/3/1970 3
1461 Mary Berry F 18/5/1965 1
1468 Abdul Ali M 11/10/1981 3
1472 Sui Wang F 27/11/1999 1

WardId WardName WardType NoOfBeds
1 Nightingale Orthopaedic 30
2 Barnard Cardiac 25
3 Seacole Medical 35
4 Guttman Geriatric 30

Figure 7.1.2 Tables Patient and Ward linked by a common field WardId

Key concept
Relational database:
A relational database is a
collection of tables.

Key concept
Modelling relationships:
Relationships in a relational
database are modelled by
shared or common fields.

Key concept
Record:
A record is composed of related pieces of
information divided into named fields, e.g. all
the information that a school holds about a
particular student.

Institution licence - St Martins School Essex

7.1 Relational databases

325

Entity relationship diagram (Beyond 8525 specification)
The relationships between entities are best represented diagrammatically in an entity-relationship diagram or E-R
diagram. Figure 7.1.3 shows the E-R diagram for the two tables Ward and Patient.

A ward is occupied by many patients (zero or more) and a patient is present in one ward at a time (at most one).

We say the relationship between the ward and patient entities is a one-to-many, symbol

A relationship is represented by a line drawn between two associated entities with a shape resembling a crow's foot
drawn at the many end of the relationship as shown in Figure 7.1.3.

A relationship has a degree which may be one of
the following:

• one-to-one

• one-to-many

• many-to-one

• many-to-many

Drawn as shown in Figure 7.1.4.

Primary and foreign keys
Primary key
A primary key is a field or minimum combination of fields
which is unique for each record in a table.
For example, WardId in the Ward table. A value for WardId of,
say, 2, identitifies one and only one record in the Ward table,
i.e. .

The primary key for the ExamResult table shown in Table 7.1.2
is a composite primary key, StudentId, ExamCode. Neither
StudentId nor ExamCode alone is sufficient to guarantee
uniqueness.
For example, StudentId value 1 identifies three records.
ExamCode might seem promising as a primary key at first
sight: Phys1 and Chem1 are unique in the table, but Maths1 is
definitely not as it identifies three records.
Foreign key

A foreign key is a field/attribute in one table that is also the
primary key of another table. It forms a link between the two
tables via this shared or common field/attribute.

For example, WardId has the role of primary key in the Ward
table and foreign key in the Patient table shown in Figure 7.1.2.

Thus, in a relational database, relationships are modelled by the foreign key mechanism.

2 Barnard Cardiac 25

Figure 7.1.3 E-R diagram for the tables Patient and Ward

Ward Patient

One-to-one
1 : 1

One-to-many
1 : n

Many-to-one
n : 1

Many-to-many
n : m

Figure 7.1.4 Diagrammatic representations of
relationship degrees

StudentId ExamCode Grade Date
1 Phys1 A June 2019
1 Chem1 C June 2019
1 Maths1 B June 2019
2 English1 D June 2019
2 French1 B June 2019
2 German1 C June 2019
2 Maths1 B June 2019
3 Sociology3 E June 2019
3 Business2 A June 2019
3 Maths1 C June 2019

Table 7.1.2 ExamResult table

Key concept
Primary key:
Attribute/field or combination of attributes/fields
which uniquely identifies a single record in the
table.
Composite primary key:
Minimal combination of fields that uniquely
identifies a single record of the table.

E-R diagraming is beyond
AQA's 8525 specification
but useful to know.

Institution licence - St Martins School Essex

7 Relational databases and structured query language (SQL)

326

Shorthand way of representing the structure of a table
It is rather cumbersome to show the structure of a table by drawing it
as shown in Table 7.1.2 so a shorter representation is often used which
omits the data/records. The shorthand representation of a table is called a
relation.

For example, the Ward and Patient tables shown in Figure 7.1.2 can be
represented as follows

The primary key of each table is indicated by using an underline. The foreign key is indicated by italicising the field
representing the foreign key.

Ward (WardId, WardName, WardType, NoOfBeds)

Patient (PatientNo, Forename, Surname, Gender, DateOfBirth, WardId)

Primary key

Primary key

Foreign key

Questions
The fields for each table shown in the E-R diagram
in Figure 7.1.5 are as follows
Customer table: CustomerId, Name, Address
AuctionItem table: ItemId, AuctionPrice, PaidYN, CustomerId
CustomerId alone is unique in the Customer table and
ItemId alone is unique in the AuctionItem table.
(a) Name a primary key for each table
(b)(i) Which table contains a foreign key? (ii) Name this foreign key.

Each GP (General Practitioner) is registered with one GP whereas a GP has many registered patients. This
relationship is shown in the E-R diagram in
Figure 7.1.6. Figure 7.1.7 shows the
corresponding tables before the foreign key,
modelling the relationship between the
two tables, is added to one of the tables.
(a) State the primary key for each table.
(b)

(i) Name the field to use as a foreign key
(ii) Name the table it should be added to.

Represent in the shorthand
way described above, the tables shown
in Figure 7.1.7 without and then with
the foreign key added.

4

Figure 7.1.6 E-R diagram for the tables GP and Patient

GP Patient

PatientNo Forename Surname Gender DateOfBirth
1456 Fred Smith M 1/3/1970
1461 Mary Berry F 18/5/1965
1468 Abdul Ali M 11/10/1981
1472 Sui Wang F 27/11/1999

GPId GPSurname GPForename Gender
1 Bloggs Arthur M
2 Patel Sami F
3 Amari Sarab M
4 Oni Ayomide F

Figure 7.1.7 Tables GP and Patient with the foreign key not yet added

5

6

Figure 7.1.5 E-R diagram for the
tables Customer and AuctionItem

Customer AuctionItem

Key concept
Foreign key:
A foreign key is an attribute/field in
one table which is also the primary
key of another table. It forms a link
between two tables via this attribute.

Institution licence - St Martins School Essex

7.1 Relational databases

327

Link tables
A student is associated with zero or more subjects and
a subject is associated with zero or more students. The
table Studies shown as an entity in the E-R diagram in
Figure 7.1.8 provides the link that is needed between
the tables Student and Subject.

We ignore the many-to-many relationship when
designing the corresponding relational database and
just model the one-to-many relationships as shown in Figure 7.1.9.

Based on Figure 7.1.9 the relational database thus consists of three tables described in shorthand form as

Subject (SubjectId, SubjectName)

Student (StudentId, Forename, Surname, Gender, DateOfBirth, Address)

Studies(StudentId, SubjectId)

The primary key for each table is shown in Table 7.1.3. Both StudentId
and SubjectId in table Studies are foreign keys as well.

SubjectStudent

Studies

Studies

StudiedBy

Figure 7.1.8 E-R diagram showing the relationships
between the three entities Student, Subject and Studies

TableName Primary Key
Student StudentId
Subject SubjectId
Studies StudentId, SubjectId

Table 7.1.3 Primary key for each table

Figure 7.1.9 E-R diagram showing the one-to-many relationship
between Student and Studies and between Subject and Studies

Student Studies Subject

Question
A competition is made up of many events. Each event involves many teams and a team participates in
many events. The entity-relationship diagram for this competition is shown in Figure 7.1.10.
The tables for Event and Team are described
in shorthand form as follows

Event(EventId, EventDescription, Date, Time)
Team(TeamId, TeamName, ContactTelNo)

(a) Modify this entity-relationship diagram so that
it uses a link entity and only one-to-many relationships.

(b) State in shorthand form the table for the link entity.

7

TeamEvent
ParticipatesIn

Involves

Figure 7.1.10 E-R diagram showing the
relationships between two entities Event and Team

Institution licence - St Martins School Essex

7 Relational databases and structured query language (SQL)

328

Types of database
The two types of database considered by AQA's syllabus are

• Flat file databases - where data is stored in a single table
• Relational databases - where data is stored in multiple linked tables.

These are not the only types of database in use today.
Table 7.1.4 shows a single table database CourseData which if stored in a disk file would be classified as a flat file
database. It is considered flat because it lacks structure other than being a collection of records made up of fields.
The equivalent relational database is shown as an E-R diagram in Figure 7.1.11 and in shorthand form in Figure 7.1.12.

The advantage of keeping all the information in one table (flat file), is that it is easier to set up. The disadvantages
are that it is harder to manage and takes up more space because the same data is included multiple times, e.g.
CourseTitle data in Table 7.1.4 is stored unnecessarily several times. This can lead to inconsistencies in the data.
For example, if the single table is edited because the course title changes from A Level ICT to A Level IT, it is
possible that the second instance is not changed through oversight. AQA0432 might now correspond to A Level IT
in one record and still be A Level ICT in another. This is an inconsistency.
A relational database stores related information in separate tables - Figure 7.1.13. This means that individual pieces
of information such as "course code has a given course title" is stored just once. There is now only one place where
course title A Level ICT is stored, i.e. in the Course table. Any duplication which occurs is necessary and occurs
where two tables need to be linked via a foreign key, e.g. TeacherId in Course table where teacher Mead teaches

StudentId StudentName Gender CourseCode CourseTitle TeacherId TeacherName
15898 Bond M AQA0643 A Level CS 1234 Mead
15898 Bond M UCL0675 A Level Maths 5678 Davies
15898 Bond M EDE0187 A Level Art 9123 Milsom
24298 Smith F UCL0675 A Level Maths 5678 Davies
24298 Smith F AQA0643 A Level CS 1234 Mead
24298 Smith F AQA0432 A Level ICT 1234 Mead
10598 Robert M EDE0187 A Level Art 9123 Milsom
10598 Robert M UOC0987 A Level French 4567 Crapper
10598 Robert M AQA0432 A Level ICT 1234 Mead
13497 Nixon F UOC0987 A Level French 4567 Crapper

Table 7.1.4 Single table database CourseData

Figure 7.1.11 E-R diagram relational database CourseData

Student StudentCourse Course

Teacher

Course(CourseCode, CourseTitle, TeacherId)

Teacher(TeacherId, TeacherName)

StudentCourse(StudentId, CourseCode)

Student(StudentId, StudentName, Gender)

Figure 7.1.12 Relational database CourseData tables in shorthand form

Institution licence - St Martins School Essex

7.1 Relational databases

329

both A Level CS and A Level ICT. Duplication which is necessary, as in the case of foreign key TeacherId in
Course table shown in Figure 7.1.13, is non-redundant duplication.
Duplication which is unnecessary, such as CourseTitle data in the single table (flat file) shown in Table 7.1.4, is
called redundant duplication.

In this chapter you have covered:
 ■ The concept of a database
 ■ The concept of a relational database
 ■ The following database concepts:

• table
• record
• field
• primary key
• foreign key

 ■ Understanding that the use of a relational database facilitates the elimination of data inconsistency and data
redundancy.

CourseCode CourseTitle TeacherId
AQA0643 A Level CS 1234
UCL0675 A Level Maths 5678
EDE0187 A Level Art 9123
AQA0432 A Level ICT 1234
UOC0987 A Level French 4567

TeacherId TeacherName
1234 Mead
4567 Crapper
5678 Davies
9123 Milsom

StudentId StudentName Gender
10598 Robert M
13497 Nixon F
15898 Bond M
24298 Smith F

StudentId CourseCode
15898 AQA0643
15898 UCL0675
15898 EDE0187
24298 UCL0675
24298 AQA0643
24298 AQA0432
10598 EDE0187
10598 UOC0987
10598 AQA0432
13497 UOC0987

Figure 7.1.13 Relational database CourseData

Necessary
duplication

Course table

Student table

StudentCourse table

Teacher table

Questions
What is a flat file database?

How does a relational database differ from a flat file database?

Explain what is meant by
(a) data inconsistency
(b) data redundancy

Explain how the use of a relational database facilititates the elimination of
(a) data inconsistency
(b) data redundancy

8

9

10

11

Institution licence - St Martins School Essex

330

 ■ 7.2 Structured Query Language

Querying a database
The main purpose of storing data in a database is to enable applications to
interrogate the database for information. This interrogation is called querying
the database.

Structured Query Language (SQL)
Structured Query Language (SQL) can be used to query a database. It is a
simplified programming language.

Retrieving data from a single table
Table 7.2.1 shows data for the Student table with structure

 Student (StudentId, StudentName, Gender)
The following query, expressed in SQL, will retrieve all of the data in the
Student table

SELECT *

 FROM Student;

The wildcard character * matches the attribute/field list

StudentId, StudentName, Gender

The ANSI/ISO SQL standard requires that a semicolon is used at the end of
the SQL statement but some systems relax this requirement. When writing
SQL the convention is to use upper case for the SQL commands.

If we wanted just the data for StudentName we would refine the query as
follows

SELECT StudentName

 FROM Student;

Learning objectives:

 ■ Be able to use SQL to retrieve
data from a relational
database, using the commands

• SELECT

• FROM

• WHERE

• ORDER BY...ASC |
DESC

 ■ Be able to use SQL to insert
data into a relational database
using the command:

INSERT INTO table_name
(column1, column2, ...)
VALUES (value1, value2, ...)

 ■ Be able to use SQL to edit
and delete data in a relational
database using the commands:

UPDATE table_name
SET column1 = value1,
 column2 = value2, ...
WHERE condition

DELETE FROM table_name
WHERE condition.

7 Relational databases and structured query language (SQL)

and structured query language (SQL)
7 Relational databases

StudentId StudentName Gender
1 Ames M
2 Baloch F
3 Cheng F
4 Dodds M
5 Groos M
6 Smith F

Table 7.2.1 Table Student

Institution licence - St Martins School Essex

7 Relational databases and structured query language (SQL)

331

We could refine the search even further by adding a WHERE clause that applies a search condition as follows

SELECT StudentName

 FROM Student

 WHERE Gender = 'F';

The result set that would be returned when this query is applied to table Student would be as follows
Baloch
Cheng
Smith

because only these rows of the table match the search condition Gender = 'F'.

Gender = 'F' is actually called a predicate because it evaluates to either TRUE or FALSE.

If we also wanted the values of StudentId returned then the query would be

SELECT StudentId, StudentName

 FROM Student

 WHERE Gender = 'F';

Retrieving data from multiple tables
Table 7.2.2 shows data in table form for the Ward table with
structure

Ward (WardName, NurseInCharge, NoOfBeds)

Table 7.2.3 shows data in table form for the Patient table with
structure

Patient (PatientId, Surname, WardName)

The two tables are linked via a shared or common attribute
WardName. The existence of an attribute common to both tables is
not enough to join data from the corresponding tables correctly, as
the following SQL query demonstrates

SELECT Ward.WardName, Ward.NurseInCharge,

 Patient.PatientId

 FROM Ward, Patient;

The part of the query Ward.WardName references the WardName
attribute in table Ward and the part Patient.PatientId references
PatientId attribute in table Patient.

The FROM Ward, Patient part joins both relations without regard
for the way that the data is actually linked via matching values of the
shared attribute, WardName. The result set returned by the query is
shown in Table 7.2.4.

Questions

Write an SQL query that returns the names of all students in Table 7.2.1 who are male.1

WardName NurseInCharge NoOfBeds
Victoria Sister Bunn 30

Aylesbury Sister Moon 40

Table 7.2.2 Table Ward

PatientId Surname WardName
1 Bond Aylesbury
2 Smith Victoria
3 Jones Aylesbury
4 Biggs Victoria

Table 7.2.3 Table Patient

Victoria Sister Bunn 1

Victoria Sister Bunn 2

Victoria Sister Bunn 3

Victoria Sister Bunn 4

Aylesbury Sister Moon 1

Aylesbury Sister Moon 2

Aylesbury Sister Moon 3

Aylesbury Sister Moon 4

Table 7.2.4 Result set ignoring
relationship between Ward and Patient

Institution licence - St Martins School Essex

7.2 Structured Query Language

332

When the search condition

WHERE Ward.WardName = Patient.WardName

is added to the SQL query, we are able to exclude values that are not linked by the attribute WardName and to
include only those that are. This SQL query will return the result set that
corresponds to the real world situation shown in Table 7.2.5.

The two relations have been joined on their common attribute, WardName, i.e.
where the value of WardName is the same in both tables.

Writing the query as follows would return the same result set because dropping
the table name prefix before NurseInCharge and PatientId in the SELECT part of the SQL query is allowed where
there is no ambiguity as to what is intended.

Ordering the result set returned by a query
We can order a result set returned by a query in ascending or descending order with the keyword ORDER BY
qualified by one of the keywords ASC or DESC. If the qualifier is omitted then ASC is assumed. For example, we
can place the result set returned in ascending
order on WardName by the query opposite.

Table 7.2.6 shows the outcome of applying this
query to the Ward and Patient tables.

Aylesbury Sister Moon 1

Victoria Sister Bunn 2

Aylesbury Sister Moon 3

Victoria Sister Bunn 4

Table 7.2.5 Result set taking
account of relationship between

Ward and Patient

SELECT Ward.WardName, Ward.NurseInCharge, Patient.PatientId

 FROM Ward, Patient

 WHERE Ward.WardName = Patient.WardName;

SELECT Ward.WardName , NurseInCharge, PatientId

 FROM Ward, Patient

 WHERE Ward.WardName = Patient.WardName;

Questions

Write the SQL query that returns from Tables 7.2.2 and 7.2.3 the name of the nurse in charge of the ward,
surnames of all patients in this ward and the ward name.

2

Aylesbury Sister Moon 1

Aylesbury Sister Moon 3

Victoria Sister Bunn 2

Victoria Sister Bunn 4

Table 7.2.6 Result set ordered
on WardName in ascending

alphabetic order

SELECT Ward.WardName, NurseInCharge, PatientId

 FROM Ward, Patient

 WHERE Ward.WardName = Patient.WardName

 ORDER BY Ward.WardName ASC;

Questions

Write the SQL query that returns the names of both nurses and their
patients, from Tables 7.2.2 and 7.2.3, ordered in descending patient
name order.

3

Institution licence - St Martins School Essex

7 Relational databases and structured query language (SQL)

333

Relational or comparison operators for
search condition
Table 7.2.7 shows comparison operators that may be used
in SQL queries.

Table 7.2.8 shows the outcome of applying this query to
the Patient table.

SELECT PatientId, Surname

 FROM Patient

 WHERE PatientId <> 2;

Table Country has the structure

Country (Name, Capital, Population, Area)

Table 7.2.9 shows some data for table Country.

The result set returned when the following SQL query

is applied to this Country table with attributes
Name, Capital, Population, Area is shown below

Comparison
Operator

Description

= Equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
<> Not equal to

Table 7.2.7 Comparison operators for SQL queries

1 Bond
3 Jones
4 Biggs

Table 7.2.8 Result set for
PatientId <> 2

Name Capital Population Area
Argentina Buenos Aires 32 300 003 2777815

Bolivia La Paz 7 300 000 1098575

Brazil Brasilia 150 400 000 8511196

Canada Ottawa 26 500 000 9976147

Chile Santiago 13 200 000 756943

Colombia Bagota 33 000 000 1138907

Cuba Havana 10 600 000 114524

Ecuador Quito 10 600 000 455502

El Salvador San Salvador 5 300 000 20865

Guyana Georgetown 800 000 214969

Table 7.2.9 Table Country showing some values

SELECT Name, Capital, Population

 FROM Country

 WHERE (Population < 7000000);

El Salvador San Salvador 5300000

Guyana Georgetown 800000

5

Questions

Write the SQL query that returns the patient surnames from Table 7.2.3, for which the patient identifier is
less than or equal to 3. Order the result set in descending order of patient identifier (PatientId is the patient
identifier).

What result set is returned when this SQL query is applied to the data in Table 7.2.9?

SELECT Capital, Population, Area

 FROM Country

 WHERE (Population > 32000000);

4

5

Institution licence - St Martins School Essex

7.2 Structured Query Language

334

Deleting data in a single table
The DELETE statement is used to delete rows of a table.

DELETE FROM table_name

 WHERE some_column = some_value;

The WHERE clause specifies which row or rows should be deleted. If the WHERE clause is omitted, all rows will
be deleted!

For example referencing Table 7.2.9,
DELETE FROM Country

 WHERE Capital = 'Brasilia';

deletes the row Brazil, Brasilia, 150400000, 8511196.

Inserting data into a single table
The INSERT INTO statement inserts a new row into a table. It is possible to write this statement in two forms.

The first form does not specify the column names where the data will be inserted, only their values:
INSERT INTO table_name

 VALUES (value1, value2, value3, ...);

The second form specifies both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3, ...)

 VALUES (value1, value2, value3, ...);

In the first form, a value of the correct data type must be supplied for every attribute of the table and the order of
the supplied values must be the same as the corresponding columns in the table.

In the second form, a value for every specified column must be supplied and each value must match in data type the
corresponding specified column, i.e. value1 corresponds to column1, value2 to column2, etc. The value Null will
be inserted for any columns not referenced.

For example, for table Ward, Table 7.2.2, reproduced here

First form:
INSERT INTO Ward VALUES ('Gresham', 'Mr Oonga', 20);

This first form creates a new row in Table 7.2.2 with values
'Gresham', 'Mr Oonga', 20

Second form:
INSERT INTO Ward (WardName, NurseInCharge) VALUES ('Savernake', 'Sister Teng');

This second form creates a new row in Table 7.2.2 with values 'Savernake', 'Sister Teng', Null

Questions

Write the SQL statement to delete the row with BorrowerId 3 in
the Borrower table shown in Table 7.2.10.

Write the SQL statement to delete the row(s) with
Population > 15000000 in the Country table shown in Table 7.2.9.

6

7

BorrowerId Surname Initial
1 Smith K
2 Barnes W
3 Minns M

Table 7.2.10 Table showing some
values for the table Borrower

WardName NurseInCharge NoOfBeds
Victoria Sister Bunn 30

Aylesbury Sister Moon 40

Table 7.2.2 Table Ward

Institution licence - St Martins School Essex

7 Relational databases and structured query language (SQL)

335

Updating data in a single table
The UPDATE statement is used to update an existing row of a table.

UPDATE table_name

 SET column1 = value1, column2 = value2, ...

 WHERE some_column = some_value;

For example,

UPDATE Ward

 SET NurseInCharge = 'Mr Ali', NoOfBeds = 25

 WHERE WardName = 'Victoria';

Questions

Write the SQL statement to update the row of the Country table (Table 7.2.9) for 'UK' to add population
64100000, area 243610. Assume that an insert statement has inserted 'UK', 'London' already as in Q9.

10

SQL Tutorials
SQL tutorials are available at https://www.w3schools.com/sql/default.asp.

It is also possible to explore SQL locally by first installing a database engine and then a tool which supports the
execution of SQL against a database accessed
through the database engine.

SQLite is a self-contained, server-less, zero
configuration, transactional SQL database engine.
The code for SQLite is public domain and is
thus free for use for any purpose, commercial or
private. It can be obtained from
http://www.sqlite.org/.

An easier route to using SQLite is to download
DB Browser for SQLite from
https://sqlitebrowser.org/. This application
takes care of the installation of both the SQLite
database engine and an interface for executing
SQL - see Figure 7.2.1.

Questions

Write the SQL statement to add a new row to the Ward table (Table 7.2.2) for ward 'Amersham',
containing 25 beds. The nurse in charge is 'Sister Brody'.

Write the SQL statement to add a new row to the Country table (Table 7.2.9) for 'UK', 'London'.

8

9

Figure 7.2.1 DB Browser for SQLite

Institution licence - St Martins School Essex

7.2 Structured Query Language

336

After installing DB Browser for SQLite, launch the application. The user interface for DB Browser for SQLite is
shown in Figure 7.2.2.

Download the Hospital.db, Country.db, Library.db and School.db databases from

www.educational-computing.co.uk/aqacs/gcsecs8525.html

Open Hospital.db database using the Open Database button. Figure 7.2.3 shows that the opened database
consists of two tables Patient and Ward.

The data stored in the Ward table is revealed by executing the SQL query

SELECT * FROM Ward;

Figure 7.2.2 DB Browser for SQLite user interface

Figure 7.2.3 Execute SQL tab

Executes the SQL statement that starts in the current line

Executes all the
SQL statements
in the SQL
window

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk/aqacs/gcsecs8525.html

7 Relational databases and structured query language (SQL)

337

Figure 7.2.4 shows the result of executing the SQL query

SELECT Ward.WardName, NurseInCharge, PatientId

 FROM Ward, Patient

 WHERE Ward.WardName = Patient.WardName

 ORDER BY Ward.WardName ASC;

In this chapter you have covered:
 ■ How to use SQL to retrieve data from a relational database, using the commands

• SELECT

• FROM

• WHERE

• ORDER BY...ASC | DESC
 ■ Using SQL to insert data into a relational database by using the command

INSERT INTO table_name
(column1, column2, ...)
VALUES (value1, value2, ...)

 ■ Using SQL to edit and delete data in a relational database by using the commands

UPDATE table_name
SET column1 = value1,
 column2 = value2, ...
WHERE condition

DELETE FROM table_name
WHERE condition

Cursor in this line
and execute current
line icon clicked

Figure 7.2.4 Querying Ward and Patient tables

Tasks
Try all the SQL examples in this chapter in DB
Browser for SQLite.

1

Institution licence - St Martins School Essex

338

 ■ Ethical impacts of digital technology
What is ethics?
When a person ‘thinks ethically’ they are giving some thought to human action
that has moral consequences for someone beyond themselves and their own
desires and self-interest.
Digital technology has created new possibilities for human action but it has
also raised new ethical questions, i.e. questions requiring new ethics with which
to reason.
The European Data Protection Supervisor (EDPS), an independent institution
of the EU, published a report in 2015 entitled

“Towards a New Digital Ethics”
(https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/
Documents/Consultation/Opinions/2015/15-09-11_Data_Ethics_EN.pdf)

At its core is the protection of human dignity and the fundamental rights to
privacy and to the protection of personal data.

The challenges facing legislators in the digital age
Laws have not kept pace with the development of digital technologies.
There is a general feeling that a person’s privacy has shrunk in the global
information society. There are something like five hundred companies that are
able to track every move you make on the Internet, mining the raw material of
the Web and selling it to marketers.
“Personal data are purchased, aggregated, analyzed, packaged, and sold by
data brokers who operate, in the US at least, in secrecy – outside of statutory
consumer protections and without consumers’ knowledge, consent, or rights
of privacy and due process” (U.S. Committee on Commerce, Science, and
Transportation, 2013).
The nature of software, data, and information, and the degree and scale of
control over software available to computer scientists and software engineers
constrain what the lawyers and legislators can achieve when local laws run up
against the global Internet.
“In today’s digital environment, adherence to the law is not enough; we have to
consider the ethical dimension of data processing.”

(Towards a New Digital Ethics)
This is the case whether the right under scrutiny is any one of copyright,
trademark, privacy, or freedom of expression. Can a law made in one country
be successfully applied to the global Internet whose content, algorithms and
access embed value judgments from different cultures, societies and legal
systems?

Learning objectives:

 ■ Explain the current ethical,
legal and environmental
impacts and risks of digital
technology on society. Where
data privacy issues arise these
should be considered.

8 Ethical, legal and environmental impacts of digital
technology on wider society, including issues of privacy

on wider society, including issues of privacy
8 Ethical, legal and environmental impacts of digital technology

Information
Hyperscale computing:
In computing, hyperscale is
the ability of an architecture to
scale appropriately and quickly
in a cost-effective manner as
increased demand is added
to the system. Hyperscale
computing is necessary in order
to build a robust and scalable
Cloud, and is often associated
with the infrastructure required
to run large distributed sites
such as Facebook, Google,
Microsoft Azure or Amazon
AWS.

Key point
Having hyperscale ability
enables many results to be
extracted from individuals’
personal data that would have
remained unknown but for
the scaling of the processing it
makes possible, as well as the
support for massive datasets of
personal information it grants.
The extracted information
can be of benefit to society
but it also has the potential
for misuse if the processing is
used for social or economic
discrimination, unsolicited
advertising, or reputational
damage.

Institution licence - St Martins School Essex

https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-09-11_Data_Ethics_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-09-11_Data_Ethics_EN.pdf

8 Ethical, legal and environmental impacts of digital

339

General Data Protection Regulation 2018
The EU’s General Data Protection Regulation (GDPR) took effect on 25 May 2018, and
affects not only EU-based organizations, but also possibly data controllers and processors
around the world of data of EU data subjects. The UK has passed an Act of Parliament
which implements the GDPR - Data Protection Act 2018. The fines for non-compliance
per incident can be substantial (maximum € 20 million or 4% global annual turnover
whichever is higher).
GDPR brings about widespread unification and standardisation of data privacy and
data security requirements across all 28 member states. Its introduction has been prompted by the growth of use of
Big Data, Cloud, and Internet Of Things (IoT) applications.

The GDPR applies to
• Companies or entities with a seat of business or

establishment in an EU member state and which
process data in the context of their businesses
regardless of where the actual processing takes place.

• Companies or entities with no establishment or physical presence in an EU
member state which offer goods or services to individuals in the EU.

• Companies or entities with no establishment or physical presence in an EU
member state which monitor the behaviour of individuals in the EU.

The GDPR offers an enhanced level of protection for data subjects:
• The definition of "Personal Data" now explicitly includes

online identifiers, location data, and biometric/genetic data.
• Higher standards for privacy notices and for obtaining

consent.
• Easier access to personal data by data subject.
• Enhanced right to request the erasure of their personal data.
• Right to object to processing now explicitly includes profiling.
• Right to transfer personal data to another organisation.

Information
The Web means the end of
forgetting:
New York Times article by
Jeffrey Rosen
http://www.nytimes.
com/2010/07/25/
magazine/25privacy-t2.
html?pagewanted=all&_r=0

Questions for discussion
Topic: Practical obscurity
Practical obscurity is an important factor in the preservation of
privacy. If the representation of information does not permit it to be
easily queried, e.g. the information is on paper in a filing cabinet, then
the extraction of important knowledge (usable information) is made
more difficult.
Why does the ability to collect and process data on a mammoth scale
in the way achieved by Google and other companies reduce practical
obscurity?
"The average citizen has participated actively in their own surveillance
when engaging with digital services and businesses". Explain why you
agree or disagree with this statement.
In respect of the Internet, should the reach of the law for each of
the following apply (i) globally or (ii) locally with each country
deciding what law to apply?
(a) copyright (b) privacy (c) freedom of expression.

1

2

3

Key concept
Data subject:
A living person whose personal
data is processed by a controller
or processor.
Data Controller:
The person/entity who
determines the purposes,
conditions and means of the
processing of personal data.
Data Processor:
The entity that processes
data on behalf of the Data
Controller.

Key concept
Information:
Data is how information is
represented.

Key concept
Personal data:
Any information related to
a natural person or "Data
Subject", that can be used to
directly or indirectly identify
the person.
It now includes online
identifiers, e.g. IP addresses,
location data, and biometric/
genetic data.

Entity:
The terms of the GDPR apply to
anyone processing personal data
except for individuals processing
personal data for personal or
household activities. This means
that the GDPR applies to clubs
or societies holding the names,
contact details or other personal
information about members.

Before entering a website
which gathers data personal
to you, it must obtain your
consent to do this, and to
record and process this data.
You have the right to opt-out.

Companies and
entities must
record that they
have obtained
your consent to
gathering, recording
and processing your
personal data.

Institution licence - St Martins School Essex

http://www.nytimes.com/2010/07/25/magazine/25privacy-t2.html?pagewanted=all&_r=0
http://www.nytimes.com/2010/07/25/magazine/25privacy-t2.html?pagewanted=all&_r=0
http://www.nytimes.com/2010/07/25/magazine/25privacy-t2.html?pagewanted=all&_r=0
http://www.nytimes.com/2010/07/25/magazine/25privacy-t2.html?pagewanted=all&_r=0

Ethical impacts of digital technology

340

Case studies for discussion
Consider the case of a large retail chain with establishments in member states of the EU.
The retail chain collects personal data from customers in these member states. They also have an online
website where they sell goods worldwide and they collect personal data in member states, and the US,
Canada and Latin America. They move all their data processing activities to the Cloud. The data is stored
on servers in the US and security for the data is managed from India.
Does the GDPR apply to this retail chain considering that the servers are not in the EU and the services
are not managed in the EU and many data subjects whose data are collected are not in the EU?
The answer is yes because the company has an establishment in the EU and processes personal data. The
main relevant factor is the seat of business. That is all that counts.

Where location data other than traffic data, relating to users or subscribers of public communications
networks or publicly available electronic communications services can be processed, such data may only
be processed when they are made anonymous, or with the consent of the users or subscribers to the extent
and for the duration necessary for the provision of a value added service. The service provider must inform
the users or subscribers, prior to obtaining their consent, of the type of location data other than traffic
data which will be processed, of the purposes and duration of the processing and whether the data will be
transmitted to a third party for the purpose of providing the value added service.

The GDPR states that the test for whether a person is "identifiable" depends upon "all the means
reasonably likely to be used" to identify that person. This means that IP addresses of visitors to a website
are personal data in certain circumstances.
IP addresses will be personal data in the hands of any party that can lawfully obtain sufficient additional
data to link the information to a person's real world identity. On the other hand, IP addresses will not
be personal data in the hands of a party that has no legal means of obtaining sufficient additional data to
make such a link.

1

2

3

Questions for discussion
A company based in California, its only seat of business, operates servers and a subscription service for
online multiuser gaming. It has members from everywhere in the world including the EU.
Does the GDPR apply to this company? Justify your answer.

A company based in Nevada, USA, its only seat of business, monitors the online behaviour of individuals
in the EU so that it can create profiles of individuals to sell on to retail companies.
Does the GDPR apply to this company? Justify your answer.

Using your mobile phone you access an online game running on a company's servers but have noticed
that wherever you are when playing this game, adverts pop up for retail stores in your current locality.
You believe that this company is using your location data but you did not consent to this specific use of
your location data when you consented for the company to process your personal data. Has this company
broken the GDPR? Justify your answer.

Like many website operators, a company records the IP addresses of visitors of its websites.
(a) Will IP addresses qualify as personal data under the GDPR?
(b) If they do qualify then will the company be required to obtain consent in order to process such data
from individuals visiting the company's websites?

4

5

6

7

Institution licence - St Martins School Essex

8 Ethical, legal and environmental impacts of digital

341

Geolocation- tracking you and your location
Geolocation is the identification or estimation of the real-world geographic location of an object, such as a mobile
phone, or Internet-connected computer.

Geolocation data collection can be categorised into three types according to how the data is collected:

1. Voluntary geolocation data collection - some people deliberately broadcast their geographic location by
formally tagging their location and "checking in" at various places on social media sites using their GPS-
enabled smartphones or by connecting to a Wi-Fi access point.

2. Necessary geolocation data collection - a mobile phone is constantly reporting its location to the nearest
mobile base station. That is how the mobile phone network knows where the phone is located so that it can
connect a call to the phone. The mobile phone company keeps records of where your mobile has been and
where it is currently.

3. Surreptitious geolocation data collection - this is geolocation tracking without your knowledge or
consent, e.g. StingRay which pretends to be a mobile base station by simulating its signal and thereby
forcing each mobile phone in its area to disconnect from its service provider site (e.g. operated by Vodafone,
EE, etc.) and establish a new connection with StingRay by which the mobile phone numbers and unique
electronic serial identification numbers of each can be read and a target for surveillance identified. StingRay
may then establish a connection with the mobile phone's provider and remain in the middle, listening and
recording calls made from the connected mobile phones.

Society

A society of citizens is a society in which strangers can trust one another since everyone is bound by a common set
of rules.
Trust can grow between strangers, because it does not depend upon family connections, tribal loyalty, or favours
granted or earned.
Citizenship is the relation that arises between the state and the individual when each is fully accountable to the
other:

• It consists of a web of reciprocal rights and duties upheld by a rule of law which stands higher than either party.
• The state enforces the law but it enforces it equally against itself and against the private citizen.
• The citizen has rights which the state is duty-bound to uphold.
• The citizen has duties which the state has a right to enforce e.g. when the state is threatened a citizen may be

conscripted.

Tasks
Visit the following site and read about the use of StingRay equipment.
http://www.bbc.co.uk/news/business-33076527

Visit the following site and view the video on Raytheon's Rapid Information Overlay Technology (RIOT)
which uses only publicly available data from social media sites, Facebook, Instagram, etc to draw a detailed
picture of a person based on where he or she goes: https://www.youtube.com/watch?v=fIIUVJ6PC1k
Optional: Visit the following site and view the video "Can You Track Me Now?"
https://www.youtube.com/watch?v=NjuhdKUH6U4
(Warning: This video is 1 hour 39 minutes long)

1

2

3

Institution licence - St Martins School Essex

Ethical impacts of digital technology

342

It is generally accepted that we surrender certain freedoms in exchange for security provided by the state.

Citizens are supposed to have a clear conception of where their freedoms end because these rights and duties are
defined and limited by law.
However, laws have not necessarily kept pace with the development of digital technologies whilst at the same time
digital technologies have created new possibilities for human action such as state electronic mass surveillance of its
citizens.
This has led to a general feeling that a person’s privacy has shrunk in the global information society:

1. Citizens normally value their privacy and may not like it when governments or security services have too
much access.

2. However, governments and security services often argue that they cannot keep their citizens safe from
terrorism and other attacks unless they have access to private data.

Investigatory Powers Act 2016
In the light of concerns expressed by various quarters in society, especially following the Edward Snowden
revelations, the Investigatory Powers Act 2000 was revised and replaced in 2016 by a new Act, the Investigatory
Powers Act 2016. This new Act comprehensively sets out, and in limited respects, expands the electronic
surveillance powers of the UK intelligence community and police whilst also improving the safeguards on the
exercise of these powers.

This Act sets out the extent to which certain investigatory powers may be used to interfere with privacy.

The Act introduced new powers, and restated existing ones, for UK intelligence agencies and law enforcement to
carry out targeted interception of communications, bulk collection of communications data, and bulk interception
of communications.

The Secretary of State may, by retention notice, require a telecommunications operator to retain UK Internet users'
"Internet connection records" for up to one year – which websites were visited, e.g. https://en.wikipedia.org, but
not the particular pages and not the full browsing history. The retention notice warrant must be approved by a
Judicial Commissioner.

It allows police, intelligence officers and other government department managers to see Internet connection records,
as part of a targeted and filtered investigation, provided that a warrant has been granted for this purpose.

It permits the police and intelligence agencies to carry out targeted equipment interference, that is, hacking into
computers or devices to access their data, and bulk equipment interference for national security matters related to
foreign investigations covered by a warrant. A bulk interception warrant applies to the interception of overseas-
related communications. A bulk acquisition warrant can be issued by the Secretary of State in the interests of
national security or for the purpose of preventing or detecting serious crime.

Task
Visit the site http://www.bbc.co.uk/news/technology-25085592 and answer the following questions:

(a) What is Prism?
(b) What is Tempora?
(c) Why might Angry Birds and other mobile applications lead to a leakage of personal information?

4

Institution licence - St Martins School Essex

8 Ethical, legal and environmental impacts of digital

343

Wi-Fi hotspots

Wi-Fi hotspots can create data privacy issues because they are a means by which communications may be
intercepted and data stolen.
Wi-Fi hotspots are wireless broadband networks which allow access to the Internet in various public spaces such
as cafes, airports and public transport. They enable people to access their email and other network applications
in public spaces. It's faster and more reliable than mobile broadband like 4G and avoids using some of a mobile
phone's data allowance. But public Wi-Fi hotspots are not considered safe. For example, in 2016 a journalist wrote
an article reporting that his email got intercepted by a hacker while using an airplane Wi-Fi - read the following
article at http://securityaffairs.co/wordpress/44876/hacking/ournalist-hacked-on-plane.html.
For this reason, many people avoid using Wi-Fi hotspots or if they have to, don't communicate anything
confidential such as bank account details or login details. Better still they use a Virtual Private Network (VPN) so
that communications are encrypted or they use a messaging app such as WhatsApp®.
WhatsApp provides end-to-end encryption which means that messages are secure so only you and the person
you're communicating with can read or listen to them, and nobody in between, not even WhatsApp (except for a
security flaw that has been discovered recently - https://www.schneier.com/blog/archives/2017/01/whatsapp_securi.html)!
End-to-end encryption relies on a temporary session key which is not saved so cannot be handed over to security
services because once used it is destroyed.

Task
Visit the following site and view the video to get an overview of the implications of the Investigatory
Powers Act 2016:
https://www.engadget.com/2016/12/20/investigatory-powers-act-explained/

What is meant by the double-lock for interception warrants?

5

Questions

The making of the law, as an activity, is itself governed by morality - what is right and what is wrong.
There are three important moral considerations that must be taken into account in every decision the state
makes:

• public welfare;
• individual rights;
• justice between individuals.

This question is about the Investigatory Powers Act.
(a) How does the Act target public welfare?
(b) The Act has the potential to interfere with the privacy of individuals. Explain.
(c) What safeguard(s) does the Act contain to protect the rights of individuals to privacy?

8

Task
Read the article which is available on the following site:
https://www.theverge.com/2017/3/27/15070744/encryption-whatsapp-backdoor-uk-london-attacks

Give one argument for and one argument against a government being allowed to read end-to-end
encrypted messages (the encryption key used must be saved somewhere if a government is to be able to
decrypt a communication)?

6

Institution licence - St Martins School Essex

https://www.engadget.com/2016/12/20/investigatory-powers-act-explained/

Ethical impacts of digital technology

344

Wearable technologies

Wearables include anything strapped to or otherwise attached to the human body that
• Collect state, e.g. heart rate
• Communicate information, e.g. heart rate
• Or otherwise performs some type of control function on or around the individual, e.g. warn

wearer heart rate too high.
Figure 8.1 shows an example containing two sensors and one actuator each with a controller and a low energy
Bluetooth wireless interface called BLE.

These connect to a smart phone via Bluetooth forming a
Wireless Personal Network (WPAN).
The smart phone may then connect to the Internet via a
mobile phone network then an Internet gateway in order to
upload the data.
The Apple Watch, FitBit, Nike+ and others are well-known
examples.
Figure 8.2 shows a Nike+ running watch with integrated
sensors and the running app displaying data on an iPhone.

Wearable, networked sensors may detect heart rate,
temperature, inertial acceleration (for example, to evaluate
a runner's stride and tempo), location information (for
calculating speed), and many others.

However, ethical concerns, from privacy to security, arise
with the use of wearables such as who has access to a person's
personal health data if the wearable(s) is used to monitor
a person's health and communicated via a gateway such as
Microsoft's Azure IoT hub? Who owns and controls it? Is it
shared with third parties? Is it sold or loaned for marketing or
advertising purposes?

Figure 8.2 Nike+ running watch and App
(www.flickr.com/ivyfield/4762376623 CC
BY 2.0)

Bluetooth
LE

radio frequency
links

Wireless
Personal
Network
(WPAN)

To mobile
phone

network

Smart phone

Actuator

Sensor

Sensor

Controller

Bluetooth LE (BLE)
Interface

Figure 8.1 Wearable
embedded system

Institution licence - St Martins School Essex

8 Ethical, legal and environmental impacts of digital

345

Wearables may also be used by companies to track their employees' movements which again raises ethical concerns
regarding how this information might be used.
One form of wearable, Google glass, prompted various sources to raise issues regarding the intrusion of privacy,
and the etiquette and ethics of using the device in public and recording people without their permission. Google
Glass displayed information in a smartphone-like hands-free format. Wearers communicated with the Internet via
natural language voice commands. However, Google Glass also had a way to record everything going in front of the
wearer. It turned out that very few people were willing to be recorded walking and talking because they considered
it an invasion of their privacy. On January 15, 2015, Google announced that it would stop producing the Google
Glass prototype but in July 2017 it announced that the Google Enterprise Edition would be released for use in the
workplace as an assistive device.

Internet of Things (IoT)

According to the IEEE1, an Internet of Things (IoT) is a network that
connects uniquely identifiable "things" to the Internet. The "things"
have sensing/actuation, potential programmability capabilities, unique
identification, information about the "thing" can be collected and the state of
the "thing" can be changed from anywhere, anytime, by anything."
The "Things" in IoT are "Smart Things" which consist of

• Sensors (temperature, light, motion, moisture, etc).
• Displays.

1 IEEE - Institution of Electrical and Electronic Engineers

Questions
Why might wearing Google Glass in a cinema prompt the management to request that you remove it or
worse, leave the cinema?
A healthcare company which charges for its services provides each of its clients with a free wearable fitness
tracker. Fitness data is sent from the clients' mobile phones via the Internet to the company's servers where
the data is analysed.
(a) State one concern that a client might have about how the personal health data obtained from the
fitness tracker will be used by the healthcare company.
(b) State one benefit that a client might receive from using the free wearable fitness tracker.

Current health care is doctor-centric. Society may have to get used to relying on a different model of
health care in the future which raises ethical issues of access and privacy concerns regarding individuals'
health data and how it is used.
(a) One such model could involve the use of wearable technology.

Suggest three uses of wearable technology connected to a smart phone that could assist individuals in
monitoring and maintaining their health.

(b) If this model is adopted, why might some individuals not be able to participate in such a programme
of health care and therefore be disadvantaged?

(c) Explain how the data collected by wearable technology could be communicated securely to individuals'
doctors.

(d) Give two reasons for society why in the future, a greater reliance on the use of wearable technology for
healthcare might become necessary.

9

10

11

Information
In 2012, Google filed a patent
application for a device which
receives the environment sounds
heard at the same time with a
conversation on a computer
microphone or phone so that it
could identify exactly what the user
was doing and use this to make an
advertisement highly adapted to the
surrounding environment.

Institution licence - St Martins School Essex

Ethical impacts of digital technology

346

• Actuators - a component responsible for moving or controlling a
mechanism or system, e.g. opening or closing a valve.

• Computation (can run programs and logic).
• Communication interfaces (wired or wireless).

The IoT enables environmental monitoring of temperature, humidity, dew point,
air quality and more.
The Internet of Things raises ethical questions such as "Who is the owner of the
data retrieved by the sensors of the objects connected to the Internet of Things?”
It is quite feasible for people to not know where their information ends up.
The movement of individuals may be monitored without them being aware of it.
How many people are aware that RFID tags are embedded in all sorts of objects
from car tyres to goods purchased in shops? The data registered by the sensors can
be sent in great quantities and in different ways through networks.
The information collected from a chip implanted with the person’s consent (for
medical purposes) might be used for purposes other than those for which consent
has been obtained.

Computer based implants
Computer based implants include any sensor, controller, or communication
device that is inserted and operated within the human body or an animal's body.

Task
Visit the following site to see the world's smallest implantable computer:
https://www.eecs.umich.edu/eecs/about/articles/2015/Worlds-Smallest-Computer-Michigan-Micro-Mote.html

Give two uses for this computer implanted within the body.

7

Questions
 Microchips are being developed containing a reservoir of a particular
drug. These can be implanted under the skin and are designed to
release 30 micrograms a day of the drug. The dosage may be altered
by remote control, as well.
Suggest one benefit and one danger from such a computer based
implant.

Discuss benefits and dangers of using a computer based implant
containing a person's complete medical record.

State two applications of computer based implants that have restored
lost senses in human beings.

12

13

14

Information
1. Dick Cheney was US
Secretary of Defense during
Operation Desert Storm, the
1991 invasion of Iraq.
2. Dick Cheney has been
fitted with a heart pacemaker,
recently.
The pacemaker was specially
adapted for Dick Cheney so
that it would be resistant to
hacking and disruption. This
must be very reassuring to the
rest of the population which has
to make do with pacemakers
that are vulnerable to hacking.

Information
Attempts are being made
to control the wild pony
population on Dartmoor
using a medical implant that
is injected under the skin of
female ponies. The implant is
designed to deliver a measured
dose of a contraceptive.

Information
Radio frequency identification
(RFID):
Any method of identifying
and tracking items using
radio waves. Typically a reader
(also called an interrogator)
communicates with a
transponder, which holds digital
information in a microchip.
Alternatively, a chipless RFID
tag is used which just uses
material to reflect back a
portion of the radio waves
beamed at them. People can be
tracked by the RFID tag they
have in their possession e.g. a
bus pass, and those injected or
implanted within human or
animal skin.

Institution licence - St Martins School Essex

https://www.eecs.umich.edu/eecs/about/articles/2015/Worlds-Smallest-Computer-Michigan-Micro-Mote.html
https://www.eecs.umich.edu/eecs/about/articles/2015/Worlds-Smallest-Computer-Michigan-Micro-Mote.html
https://www.eecs.umich.edu/eecs/about/articles/2015/Worlds-Smallest-Computer-Michigan-Micro-Mote.html

8 Ethical, legal and environmental impacts of digital

347

Issues around copyright of algorithms (not in AQA specification 8525)
The expression of an algorithm in a source code file (i.e. a program) can be
copyrighted but the algorithm itself cannot be in many jurisdictions around the
world because copyright cannot protect a concept, idea or fact. Every day stories
covering the same news events appear in the nation’s rival newspapers but because
the words used in each case are different, there is no copyright infringement.

Copyright only protects the original expression of an idea while patent protects
man-made, inventive and novel inventions based on ideas.

A famous patent is Google's search algorithm. Patent publication number US

6285999 B1 "Method for node ranking in a linked database, inventor Lawrence
Page" was filed on July 6, 2001 by Lawrence Page - see www.google.com/patents/
US6285999.

Copyright allows the rights holder to prevent unauthorised reproduction of
particular pieces of source code that embody an algorithm. However, such rights
do not pertain to the algorithm itself and so copyright itself does not prevent
others creating other expressions of the same algorithm in some other form, such
as a different source code file unless the algorithm is covered by a patent.

Most countries place some limits on the patenting of inventions involving
software, but there is no one legal definition of a software patent. In Europe,
"computer programs as such" are excluded from patentability, but despite this,
the United Kingdom Intellectual Property Office (UKIPO) regularly grants
patents to inventions that are partly or wholly implemented in software.

You must be careful not to violate copyright laws when using the work of others.

Information
The expression of an algorithm
in a source code file can be
copyrighted. However, to
protect the expression of the
algorithm it should be patented,
provided it meets the criteria for
a patent.

Information
Proprietary software:
Only the original authors
of proprietary software can
legally copy, inspect, and alter
that software. In order to use
proprietary software, computer
users must agree (usually by
signing a license displayed
the first time they run this
software) that they will not do
anything with the software that
the software's authors have not
expressly permitted. Microsoft
Office and Adobe Photoshop
are examples of proprietary
software.
Open source software:
Open source software is
software with source code that
anyone can inspect, modify, and
enhance.
(Reproduced under Creative
Commons licence CC BY-SA
4.0 from
https://opensource.com)

Questions

Which of the following statements are true?
A An algorithm can be copyrighted.
B The expression of an algorithm in a source code file can be

copyrighted.
C An invention may be patented in the UK if partly or wholly

implemented in software.
D The expression of an algorithm in a source code file cannot be

copyrighted.
E An algorithm cannot be copyrighted.

15

Questions
Some people prefer open source software to proprietary software whilst others prefer to use propriety
software.
State one reason for using open source software and one reason for using propriety software.

16

Task
Read the article on open source software at https://opensource.com/resources/what-open-source8

Institution licence - St Martins School Essex

http://www.google.com/patents/US6285999
http://www.google.com/patents/US6285999

Ethical impacts of digital technology

348

Theft of computer code (not in AQA specification 8525)
The theft of intellectual property is a crime. Software is intellectual property. The copying, use and distribution
of software without permission is known as software piracy. Software piracy started to become an issue when the
arrival of microcomputers in the late 1970s and early 1980s created a mass market, and software houses started to
produce products that didn’t require technical support to install and run.

Cracking and hacking (unauthorised access to a computer system) (not in AQA specification 8525)

Hacking and cracking are forms of Internet and computer related privacy and copyright breaches, usually malicious.

Cracking focuses on finding or making a back door in software, and exploiting it for malicious use or for an act
which breaches copyright. For example, when installing software, the user is often required to enter a unique
product key which came with the software. People who practise cracking try to find a way of subverting this
protection. It might mean patching the software so that it will now accept a product key set by the cracker.

A hacker is someone that uses their extensive knowledge of software systems and computer code (or uses a tool
provided by other hackers) for malicious purposes such as stealing passwords, creating a bot net, or in general
committing acts that breach someone's privacy, without their knowledge, or consent. Broadly speaking, hacking is
unauthorised access to a computer system.

More detail is covered in section 6, Fundamentals of cyber security, of this book.

Environmental impact
We live in an era where a multitude of devices are in use each day from servers to embedded systems, personal
computers to smartphones.
All of these devices consumed natural resources when they were manufactured and create disposal problems which
can impact on the environment when no longer required.
Manufacture

Manufacturing computer parts can result in direct and indirect damage to the environment from:

• the waste generated and the energy consumed in mining of raw materials needed to make the parts and
their packaging

• the consumption of water needed during production of both parts and their packaging
• the power consumed to operate the factories of production
• the use of fossil fuel for transporting parts and their assemblies.

Greenhouse gas emissions result from the above activities which contribute to global warming.
Use

Energy is consumed when devices are in use and also when left unattended, switched on. Many systems include
options for conserving power, but these only operate if the system is configured to use them when the system is
on but inactive. In the UK in 2016 the annual cost of leaving devices on at work or home was estimated to be
£120,000,000. Data centres are particularly high energy users. The Google data centre shown in Figure 4.5.5.11,
Chapter 4.5.5, of some 100,000 commodity servers, consumes a total power of 40 MegaWatts. This is roughly the
total power output of Coolkeeragh power station in Northern Island.

Questions

Explain the difference between a hacker and a cracker.17

Institution licence - St Martins School Essex

8 Ethical, legal and environmental impacts of digital

349

Heat generation, a by product of the use of technology, is also a problem for the environment. Whilst one computer
alone may not seem to generate a lot of heat, the sheer volume of computers in use on this planet do. This heat
doesn't disappear, it dissipates into the environment.
Disposal

One should always try to recycle components not only because computers
contain precious or rare elements such as gold which can be reused but also
because some components are toxic to the environment and some do not
decompose readily resulting in the need for more landfill sites. The alternative of
burning in an incinerator is harmful to the environment because it will result in
the emission of greenhouse gases and the release of hazardous chemicals.
Environmental benefits

Whilst people should be concerned about the carbon footprint of digital
technologies, some of this footprint can be offset against savings made elsewhere
from changing the way things are done. These are listed below.

1. Reduction in use of paper

Many items that traditionally were paper-based don't have to be any
longer, electronic copies can now be stored and made available online, thus
reducing the demand for paper. For example, consumers may now download
electronic copies of books and read them on screen.

Cloud storage has made it easier to collaborate online thus avoiding the need
to work with multiple paper copies of a document.

However, many people still prefer to read paper copies, but it is expected
that this will change over time as the percentage of digital natives increases.
When this is coupled with widespread, affordable, high speed Internet access
it is expected that there will be less need for paper which should result in
fewer trees being cut down, and less damage to the environment. Also, if less
paper is needed there will be less of it to be disposed, and if disposal is by
burning, less carbon emissions.

Some schools and colleges have already adopted an e-book only policy further contributing to a reduction in
the need for paper.

2. Download versus supply in some storage media form

Software is downloaded nowadays instead of being supplied on storage media such as CD-ROM. This has led
to a reduction in environmental costs incurred by the manufacturing, packaging and transportation of such
storage media. Similarly, transactions are usually paid for online via electronic money, i.e. a credit or debit card,
which avoids the need to use paper money or a paper cheque. Also downloading software avoids another source
of carbon emissions which occurs when software goods have to be physically transported.

3. Working from home

Cloud storage has created more opportunities to work from home as it is now possible to collaborate online on
tasks and avoid journeys to and from the workplace via energy consuming and polluting forms of transport.
This may be a model of working in the future for many people and from which much environmental benefit
may be gained.

Information
Carbon footprint:
The amount of carbon dioxide
released into the atmosphere
as a result of the activities
of a particular individual,
organization, or community.

Did you know?
Medical prescriptions:
Many doctors' surgeries now
send patient prescriptions
to pharmacies electronically
eliminating the need for paper
prescriptions.

Information
Digital native:
Someone who has grown up
with digital technology.
Digital immigrant:
Someone who grew up before
digital technology became
prevalent.

Institution licence - St Martins School Essex

Ethical impacts of digital technology

350

Smart systems

Smart or intelligent systems have the ability to make decisions on behalf of a user, reducing reliance on the need
for human control. Smart home systems now allow users to automate many monitoring and control tasks based
on initial settings plugged into an app. Software then makes decisions based upon external factors such as room
temperature, the time of day, and the movement patterns and habits of the occupants of the house. Smarter control
of heating and lighting systems can lead to energy savings which impact positively on the environment.

In conjunction with smart lighting, i.e. digitally controllable lighting, individual lights can be made to flash to warn
an occupant of a central heating boiler fault that is causing the emission of harmful levels of carbon monoxide.

Cyber security
See Section 6, Fundamentals of cyber security.

Cloud storage
See Chapter 4.5.5.

Autonomous vehicles
What is meant by autonomous vehicle?

The dictionary definition of autonomous is
Acting alone, independent, self-governing

Autonomous vehicles are automated vehicles with various degrees of control by "machine" where the machine
consists of

• a range of sensors that sense the environment, e.g. other vehicles, and the behaviour of the vehicle, e.g. the
vehicle's own speed

• actuators that physically carry out commands such as apply brakes
• processors that process sensor information, evaluate some or all aspects of the driving situation, make

decisions that control the vehicle to a lesser or greater extent, e.g. take avoiding action; issue commands in
the form of electronic signals to the actuators that carry out these decisions

• algorithms in the form of computer programs that execute in the processors to carry out the tasks of the
previous bullet point.

Autonomous vehicles in the main rely on various levels of artificial intelligence.
The algorithms that are used are machine-learning algorithms.
Such algorithms are harder to test because they rely on statistical techniques.
Contrast this with autopilot software used in commercial aeroplanes which does not rely currently on machine-
learning algorithms.
Autopilot software is considered provably safe because it relies on deterministic algorithms which lend themselves to
proofs of correctness.
Machine-learning algorithms require massive amounts of training data to work properly, incorporating nearly every
scenario the algorithm will encounter. And therein, lies the problem: the sheer number of "edge cases", i.e. unusual
circumstances that autonomous cars have to handle. This is known as the generalisation problem.

Questions

Give one cause of the negative impact on the environment in each of the following:
(a) the manufacture of digital technology devices.
(b) the use of digital technology devices.
(c) the disposal of digital technology devices.

Explain three different environmental benefits of the use of digital technology in particular ways.

18

19

Institution licence - St Martins School Essex

8 Ethical, legal and environmental impacts of digital

351

Automated and fully-automated vehicle

The Society of Automobile Engineers has published a globally accepted taxonomy (detailed definitions) for six
discrete and mutually exclusive levels of driving automation, ranging from no driving automation (level 0) to full
driving automation (level 5). Central to this taxonomy are the respective roles of the (human) user and the driving
automation system in relation to each other:

1. In level 0 the driver performs the entire dynamic driving task, even when enhanced by active safety systems
such as an anti-lock brake system, electronic stability control. These active
safety systems provide momentary intervention but do not perform any
part of the Dynamic Driving Task (DDT) on a sustained basis.

2. If the driving automation system performs subtasks of the DDT but not all
then the system is classified as corresponding to level 1 or 2. e.g. adaptive
cruise control, lane-keeping/lane-following assistance.

3. If the driving automation system performs the entire dynamic driving task
then this is classified as corresponding to levels 3, 4 and 5.

Levels 0-2

In levels 0-2 driving automation, the driver is expected to monitor the driving
environment and the driver is expected to be receptive to evident vehicle system
failures and not wait to be alerted, e.g. a broken steering arm - the component that moves a front wheel in and
out under steering wheel control.

The task of controlling the movement of the vehicle

Example 1 - Self-driving Uber car kills Arizona pedestrian

The death of Elaine Herzberg on March 18th 2018 was the first recorded case of a pedestrian fatality involving
a self-driving (autonomous) car. Elaine was pushing a bicycle across a four-lane road in Tempe, Arizona,
United States when she was struck by an Uber test vehicle, which was operating in self-drive mode with a
human safety backup driver sitting in the driving seat.

According to The National Traffic Safety Board (NTSB) which investigated the fatal crash, the software
installed in Uber's vehicles to help it detect and classify other objects "did not include a consideration for
jaywalking pedestrians". The software was only designed to detect pedestrians at known crossing points called
crosswalks in the United States of America.

Uber's vehicle detected Elaine's presence approximately 6 seconds before impact, but it failed to implement
braking because it kept re-classifying her - alternating between vehicle, bicycle, and unknown object. Each
time the automated driving system re-classified Elaine, it had to predict a new path for her. Unfortunately,
while this was happening, the backup human driver was watching a streaming video on her mobile phone
strictly against Uber's company policy. By the time that the software issued an auditory warning to the backup
driver to take over, it was too late to avoid the collision.

Information
Levels 0-2:
In levels 0-2, the driver
monitors the driving
environment, the vehicle
performance, and the
driving automation system
performance.
Adaptive cruise control:
Maintains vehicle at a
constant speed and at a
constant distance from
vehicle ahead.

Questions

Explain why Example 1 above is an example of the generalisation problem.20

Institution licence - St Martins School Essex

Ethical impacts of digital technology

352

Level 0

There is no automation. The driver performs all the DDT, i.e. driving tasks.

Levels 1-2

In levels 1-2 there is some driving automation. The driver performs the
remainder of the DDT not performed by the driving automation system.
The driver is expected to be receptive to and react to evident driving
automation system failures, such as a failure in an adaptive cruise control
system, by resuming performance of the complete DDT, i.e. the driver takes
over control.

The differences between the level 1 and level 2 are twofold:

1. The degree of control over the vehicle's movement
2. The degree of object and event detection and response.

Level 1 and 2 differences:

• Level 1 is labelled driver assistance because it has limited object and external event detection and response,
and is limited to just one movement, either longitudinal or lateral, e.g. adaptive cruise control system
(responds to external event of vehicle in front) or a lane-centering system (lateral vehicle motion control)

• Level 2 is labelled partial automation (but not self-driving) because it supports limited, but more than level
1, object and external event detection and response, whilst controlling both longitudinal (forward) and
lateral (sideways) separation of the vehicle from other objects, e.g. both adaptive cruise control (maintaining
safe separation from vehicle ahead) and lane-following/lane-keeping/lane-centering system.

Levels 3-5

In levels 3-5 the Automated Driving System (ADS) monitors its own performance of the complete DDT.
Level 3

In level 3 driving automation, the driver must be receptive to a request from
the Automated Driving System (ADS) to intervene and/or be receptive to an
evident vehicle system failure, e.g. a broken steering arm.

Levels 4-5

In levels 4-5 the ADS is responsible for handling any failures.
It should transition to a minimal risk condition by

• turning on the hazard lights
• manoeuvering the vehicle to the road shoulder and then parking it before automatically summoning

emergency assistance.

This is called DDT fallback - the plan that is followed when a DDT performance-relevant system failure occurs.
This means that while performing the DDT, the level 4 and 5 ADSs must monitor vehicle performance.
In summary, levels 4-5:
The difference between a level 5 ADS and a level 4 ADS is that the latter is restricted by design to operate in a
specific domain (level 4 is said to be limited by Operational Design Domain (ODD)) whereas the former is not.

e.g. other vehicles, lane markings, traffic signs

The ADS performs the entire DDT and DDT fallback, transitioning to a minimal risk condition without
any expectation that a user will respond to a request to intervene (in level 3, ADS assumes that a DDT
fallback-ready user is available to perform the DDT as required).

Information
Level 3 assumes that the
driver is receptive to alerts or
other indicators of a DDT
performance-relevant system
failure. Being receptive is not the
same as monitoring. For example,
a person can be alert to a fire
alarm without necessarily
monitoring the fire alarm.

Information
The fictional autonomous car
KITT from the TV show Knight
Rider, only achieved level 4
autonomy. Michael Knight
was required on occasion to
override KITT outside of KITT's
autonomous region of operation.

Institution licence - St Martins School Essex

8 Ethical, legal and environmental impacts of digital

353

Level 4

Level 4 ADSs are limited by area/location i.e. geo-fenced; by speed (high or low); specific road types, e.g.
motorways only; the presence or absence of certain road features such as lane markings, road side traffic barriers;
lighting conditions, e.g. day time only, weather conditions; or parking only and others. This is what is meant by
operating in a specific domain.

Level 5
Level 5 is designed to operate in an unrestricted domain:

Table 8.1 shows the Society of Automotive Engineers (SAE) six levels of vehicle autonomy and the UK's
Department of Transport (DOT) levels.

A vehicle with a level 5 ADS should, once programmed with a destination, be capable of operating
the vehicle throughout complete trips on public roads, regardless of the starting and end points or
intervening road, traffic, and weather conditions.

Table 8.1 Six Levels of Vehicle Autonomy

Department for Transport levels

High automation
Full
automation

SAE J3016 Levels 0 to 5 (globally adopted standard)
DRIVER

ATTENTION
Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

No
automation

Automation
provides driver

assistance

Partial automation
but not self-driving

Conditional
automation

High
automation

Full
automation

Manual control.
The human
performs all
driving tasks
(steering,
accelerating,
braking, etc).

May have some
control systems
but these
respond only to
internal events,
e.g. control
of vehicle's
speed by a
cruise control
system, and/OR
are used only
momentarily, e.g.
anti-lock brakes,
autonomous
emergency
braking.

The vehicle features
an automated
system which
responds to external
events, e.g an
adaptive cruise
control system
which maintains
vehicle's speed at a
safe distance from
vehicle ahead whilst
driver controls
steering.
Alternatively, lateral
positioning in a
lane is maintained,
i.e. lane centering,
whilst the driver
controls the brakes
and acceleration.
Automation
assistance provides
steering OR brake/
acceleration support
but not both at the
same time.

The vehicle can perform
multiple automated
functionalities in
tandem such as
steering AND brake/
acceleration - lane
centering and adaptive
cruise control at the
same time. The human
still monitors all tasks
and can take control at
any time.
Tesla Autopilot and
Cadillac (General
Motors) Super Cruise
systems both qualify
as Level 2. Active
parking/self-parking,
e.g. Nissan's ProPILOT
Assist's hand-free and
foot-free operation.

Environmental
detection
capabilities. The
vehicle can perform
most driving tasks,
but human override
is still required.

The vehicle
performs all driving
tasks under specific
circumstances.
Geofencing is
required. Human
override is still an
option.

The vehicle
performs all
driving tasks
under all
conditions. Zero
human attention
or interaction
is required.
Therefore, a
driver does
not need to be
present.

Institution licence - St Martins School Essex

Ethical impacts of digital technology

354

Example 2 - Fatal crash involving Tesla Autopilot Model S, March 1st 2019

A Tesla Model S with Autopilot was on a dual carriageway with Autopilot engaged when a white-sided
articulated lorry crossed at a crossing point ahead of the Model S. Neither Autopilot nor the Model S driver
registered the presence of the sidewise-on articulated lorry against a brightly lit sky, so the brake was not
applied.

Autopilot is a Tesla product that enables the Tesla car to steer, accelerate and brake automatically within its
lane. Current Autopilot features require active driver supervision.

Tesla state that
• Autopilot is disabled by default;
• when drivers activate Autopilot, they are required to acknowledge that the system is new technology

and that it is "an assist feature that requires you to keep your hands on the wheel at all times", and that
"you need to maintain control and responsibility for your vehicle" whilst using it;

• everytime that Autopilot is engaged, the car reminds the driver to "Always keep your hands on the
wheel. Be prepared to take over at any time."

Tesla also state that
• the system will make frequent checks to ensure that the driver's hands remain on the wheel;
• visual and audible alerts will be made if hands-on is not detected and then the car will be gradually

slowed until hands-on is detected again.
This was the first known fatality in just over 130 million miles where Autopilot was activated. In contrast,
there is a fatality every 94 million miles among all vehicles in the US and a fatality approximately every 60
million miles worldwide.

Questions

State the level of driving automation in the range level 0-5 for the Tesla Autopilot Model S described in
Example 2 above.

State using the range level 0 to level 5 which level of automation applies in each of the following

A The car can drive itself completely, but only within a well-mapped area.
B The car can drive itself on certain roads under certain conditions, but a driver is still needed and the

driver must be receptive to a request to intervene from the Automated Driving System (ADS).
C The car manages both its speed and its steering on motorways but the driver must still pay attention to

driving conditions at all times and decide to take over immediately if necessary.
D The car is kept at a safe distance from the car ahead whilst travelling in the slow lane on a motorway

whilst the driver steers the car.
E The car can drive itself anytime, anywhere, under any conditions whilst the occupants of the car are

passengers whose only role in the driving is to tell the car where to take them.
F The car's speed can be set and maintained autonomously but every other aspect of driving is done by

the driver.

State three reasons why motorways are easier for autonomous driving systems than non-motorway roads.

21

22

23

Institution licence - St Martins School Essex

8 Ethical, legal and environmental impacts of digital

355

Technology

Autonomous or self-driving vehicles must be able to "see" their environment in order to know where they can and
cannot drive, detect other vehicles on the road, stop for pedestrians, and handle any unexpected circumstances
they may encounter. For this purpose, autonomous cars use a range of sensors which may be classified as active or
passive.

Active sensors send out energy in the form of a wave. The returned energy contains information about the objects
that reflect this wave energy. Active sensors use high frequency radio waves in the form of radar, infrared light waves
in the form of lidar and high frequency (beyond the audible range) sound waves in the form of ultrasonic waves.

Passive sensors simply take in information from the environment without emitting a wave, e.g. a stereo camera,
infrared camera for seeing through fog and at night.

The range of sensors employed enable an autonomous car to have 360-degree vision, and thanks to lidar, radar, and
ultrasonic sensors, the car can see through fog and in the dark.

Other very important sources of information used by autonomous cars are GPS, high definition maps, Vehicle-to-
Vehicle (V2V) and Vehicle-to-Everything (V2X) communication.

High definition maps with a resolution of a centimetre provide an accurate, realistic representation of the road
network, including lane structure, traffic signs, traffic lights, lane geometry and road furniture, e.g. lamp posts,
crash barriers. Such maps reduce the amount of processing of sensor information that onboard computers in an
autonomous vehicle have to do to navigate a safe route to a destination.

Vehicle-to-Vehicle and Vehicle-to-Everything communication enable sharing of more environmental information
to enable autonomous vehicles to identify blindspots, avoid roadworks and traffic incidents, avoid collisions with
pedestrians/cyclists, animals or other vehicles on the road, and interact electronically with street furniture.
For example,

• Blindspot case: The lead vehicle in a convoy of three vehicles operating autonomously might slow abruptly
on encountering a cyclist. The presence of the cyclist could be communicated in real time to the two
vehicles behind which could also then slow their speed autonomously and drop back knowing now that
there is a cyclist hidden from view by the lead car.

• Unexpected situation: Vehicle A switches lane suddenly in front of the path of vehicle B on a motorway.
To avoid an accident, the sensors on both cars communicate with each other via V2V with the result that
vehicle A speeds up and vehicle B brakes autonomously.

• "Telepathy": Vehicle A can inform vehicle B that it is considering changing lane before making the decision
to do so.

• Optimising traffic flow: Vehicles can communicate with traffic lights to minimise wait times at junctions
and optimise traffic flow.

• Turning on street lights: Vehicles can turn on street lights by communicating wirelessly with a controller
mounted in each street light. When the vehicle is out of range, the controller can turn the light off thus
saving energy.

• Driving abroad: If a self-driving car is taken to mainland Europe can it cope safely with the switch from
driving on the left to driving on the right? Perhaps this is a case for geofencing and handing over to a
human driver. Alternatively, if it is connected to its manufacturer via a 5G network, on recognising a
change of country it could download the necessary software changes for driving on the right in a country
with different signage, road customs, value system, etc in realtime.

Institution licence - St Martins School Essex

Ethical impacts of digital technology

356

A choice exists between a direct short-range wireless connection and a wireless network which supports far as well as
near coverage, if vehicles are to be interconnected. Connecting to a wireless network supports vehicle-to-network,
vehicle-to-cloud, vehicle-to-IoT (Internet of Things), in addition to vehicle-to-vehicle. Direct short-range wireless
only supports vehicle-to-vehicle communication.

Any wireless network that supports V2V and V2X will need to be capable of relaying information sufficiently
quickly to enable a decision to be made in a time that at least matches that of a human driver. To achieve on-all-the-
time coverage and necessary speed of response nationally, car manufacturers will need to use Fifth Generation (5G)
wireless networking. Current Fourth Generation (4G) wireless networking will not be fast enough.

Ethics

When an individual reaches a conclusion or decision as to the morally right course of action they often draw on a
framework or set of principles to help their reasoning, e.g. our actions should do no harm. The framework or set of
principles is called an ethical framework or just, ethics. When applied to particular cases, the framework can provide
clear choices. Each ethical framework embodies the social norms and value system of the society which adopts it.

In the UK in 2018, more than 160,000 people were injured on the roads. Over 25,000 of these were seriously
hurt. 1,784 people died2. The large majority of road traffic accidents are caused when a driver makes the wrong
choice. By removing the driver from the decision-making process, autonomous vehicles hold out the possibility of
removing the source of most errors and therefore of significantly improving safety. For this reason, the mission of
encouraging and facilitating the adoption of autonomous vehicles on the roads of the UK is a moral one. Of
course, autonomous vehicles may never attain a perfect safety record but the evidence to date is that their safety
record is better than that of human drivers.

All driving involves risk. The technology within autonomous vehicles will use an "algorithm" that aims to minimise
the risk of injury to the occupants of vehicles, pedestrians, cyclists, other road users as well as the risk of damage
to property. This "algorithm" therefore must have an ethical component, as such it has been labelled the "moral
algorithm".

Who should decide this "moral algorithm"?

Human drivers operate in the complex environment of the UK's road network and their driving decisions reflect
the individual nature of each which ranges from risk-taker to risk-averse.

The "moral algorithm" will distribute risk among occupants of autonomous vehicles, pedestrians, cyclists, other
road users, and property. How should this be done and by whom?

2 Department of Transport - Reported road casualties in Great Britain:2018 Annual report.

Questions

List and describe three different technologies that a self-driving vehicle may use to accurately detect a
hazard.

Explain why is it helpful to have pre-mapped the environment in which a self-driving car is to operate
autonomously.

Describe one benefit that could follow if all road vehicles are self-driving and connected by a 5G wireless
network.

24

25

26

Institution licence - St Martins School Essex

8 Ethical, legal and environmental impacts of digital

357

Example 3 - How should driving risk be distributed and by whom?

Example ethical dilemma:
Given no other option, should the autonomous vehicle (self-driving) harm several pedestrians by swerving, or
sacrifice its own passengers to save a greater number of passers-by?

Who should decide on the distribution of risk embodied in the "moral algorithm":
Software engineers who will design and write the software, the vehicle manufacturer who is responsible in
law for the autonomous vehicle or a public body regulator appointed by Government? Before answering this
question you may like to consider the following statements:

• Software engineers should decide on the distribution of risk because they possess superior technical
understanding and skill and therefore can make the right decision in all cases.

• The vehicle manufacturer should decide because they believe that liability in law won't ever arise since
their vehicle will be safer than a reasonable human driver.

• A respected authority with legislative powers who can set the parameters for the "moral algorithm" in a
way that will gain the trust of the public.

Task
What is your answer to the ethical dilemma question posed in Example 3. Explain your answer.
Who do you think should decide on how the risk should be distributed? Explain your answer.

9

Example 4 - Is the moral algorithm really relevant?

1. Future autonomous vehicles should prioritise saving their own occupants in a no-win traffic situation,
i.e. where someone is likely to die. If you know you can save at least one person, at least save that one,
i.e. save the one in the car. The "moral algorithm" should therefore prioritize the safety of occupants of
the vehicle over pedestrians.

2. A "moral algorithm" that takes the decision to run over the pedestrian in a no-win traffic situation
would be unethical, unacceptable, and also illegal because for all these reasons, it is a decision in favour
of one person and thus against another.

3. Neither programmers nor automated systems are entitled to weigh the value of human lives.
4. The "moral algorithm" dilemma situation can be completely avoided by, for example, implementing a

risk-avoiding operating strategy in autonomous vehicles.
5. The ethical question of who to save won’t be as relevant as people believe, today, because it will occur

much less often in the future if autonomous vehicles are commonplace.
6. There are situations that human drivers, today, can’t handle or which, from a physical stand point, are

also unpreventable with both conventional and autonomous vehicles. However, autonomous vehicles
will be far better than the average driver.

7. Autonomous vehicles won’t drive into situations where the "moral algorithm" dilemma could happen
and will drive away from potential situations where those decisions have to be made at all.

8. Human drivers don't make ethical decisions, they react on instinct and are either lucky or unlucky so
why should we expect autonomous vehicles to do any better by employing a "moral algorithm".

Task
After reading Example 4 do you think that the "moral algorithm" dilemma is really relevant? Explain your
answer.

10

Institution licence - St Martins School Essex

Ethical impacts of digital technology

358

The general consensus in the industry is that concerns over the so-called "moral
algorithm" problem – where a vehicle is unable to avoid a collision and is asked
to make a choice over which defined individuals it hits – are exaggerated, with
most experts agreeing that autonomous vehicles would never be programmed to
make such decisions.

However safety regulations would be needed for other "decisions", such as
when it is permissible for an autonomous vehicle to break the rules of the road
(see task 11), and how should a vehicle respond when interacting with other
road users, e.g. at cross roads where who goes first is resolved by an accepted
convention that the vehicle that starts to edge out, signals its driver's intention
to go first to the other vehicle's driver.

Information
"The moral algorithm is a
term that is good for tabloid
newspapers. There is no such
thing in the software that will
tell the car to hit the 80-year old
in order not to hit the group of
kids."
Dr Heiko Schilling ("The Moral
Algorithm", December 2016)

Example 5 - Following the letter of the law

Road traffic law is broken if a vehicle crosses a double white line in the centre of the road.
Double white lines in the centre of the road are there for a good reason: highway engineers have identified that
this section of road is unsafe and for this reason want vehicles to stay on the left hand side of the road at all
times.
A self-driving vehicle programmed to follow the letter of the law refuses to cross a double white line to avoid
a drunken pedestrian who has stepped into the road, even though the vehicle knows that the other side of the
road is empty of traffic.
Rarely will a self-driving vehicle be absolutely certain that crossing a double white line is safe but if the
vehicle is reprogrammed to not always follow the letter of the law, then who decides what confidence level of
safety to program into the software, e.g. 98%, and how this level must vary depending on what the vehicle is
attempting to avoid, whether it is litter swept into its path by a breeze or a fallen pedestrian.

Question

If a manufacturer offers different versions of its "moral algorithm", and a buyer knowingly chooses one
of them, is the buyer to blame for the harmful consequences of the algorithm's decisions? Explain your
answer.

27

Questions

A person of good judgement will know when to disregard the letter of the law in order to follow the spirit
of the law, e.g. to briefly exceed the speed limit to get out of the way of an emergency vehicle flashing its
blue lights. Read Example 5. Who do you think should set the confidence level of safety to be
programmed into the software:
• Manufacturer
• Software designer
• An independent regulator appointed by Government?
Explain your reasoning.
Read the following article
https://www.theguardian.com/science/political-science/2018/apr/13/self-driving-car-companies-should-not-be-allowed-to-investigate-their-own-crashes

Explain why access to black box information from automated vehicles involved in crashes is important.

100% confidence level means the car always operates safely
0% confidence level means the car never operates safely

28

29

Institution licence - St Martins School Essex

https://www.theguardian.com/science/political-science/2018/apr/13/self-driving-car-companies-should-not-be-allowed-to-investigate-their-own-crashes

8 Ethical, legal and environmental impacts of digital

359

In summary, the main moral benefit of autonomous vehicles will be
enhanced road safety. The degree to which this will be realised is in
proportion to the degree to which

• autonomous vehicles dominate the road network

• the inter-connectedness (5G) of autonomous vehicles

• the support provided by the road network infrastructure, i.e. road
networks designed to assist autonomous vehicles.

Legal
The Automated and Electric Vehicles Act 2018 received Royal Assent on
19 July 2018.

The Act uses the term ‘automated vehicles’ (AVs) when referring to
driverless cars.

According to the Bill,

"a vehicle is 'driving itself' if it is operating in a mode in which it
is not being controlled and does not need to be monitored by an
individual."

Therefore, the Act applies only to levels 3-5 automated vehicles and
excludes the current and near future semi-autonomous vehicles in which
the driver is expected to be monitoring the vehicle whilst in AV mode, i.e.
vehicles that operate at levels 1 and 2.

The exclusion of current and near future semi-autonomous vehcles from
the scope of the Act means that accidents involving these vehicles may
have to be resolved by the courts, in cases that may well require complex
technical evidence and involve the manufacturer.

Under the Act an insurer or owner can be liable for the consequences of
an accident caused by the actions of an AV at a time when it is not under
the immediate physical control of a human being:

"Where
(a) an accident is caused by an automated vehicle when driving

itself on a road or other public place in Great Britain,
(b) the vehicle is insured at the time of the accident, and
(c) an insured person or any other person suffers damage

as a result of the accident, the insurer is liable for that
damage."

Task

UK Autodrive is the largest of three UK consortia launched to support the introduction of self-driving
vehicles in the UK. One of the cities chosen by UK Autodrive for their trials of self-driving vehicles was
Milton Keynes in Buckinghamshire.
Investigate the design of the road network of Milton Keynes to discover what makes it suitable for the
trials of autonomous vehicles?

11

Information
A driverless delivery lorry is being used
alongside normal traffic on public roads
in Sweden.
The large lorry, called a T-Pod, weighs 26
tonnes fully laden and transports goods
between buildings on an industrial
estate.
The vehicle is not entirely autonomous,
as a remote operator monitors it from a
control room while it works.
The lorry is limited to 5km/h while
mixing with human-driven traffic
and can make trips between only two
locations on the industrial estate.
Advanced communications systems have
been placed along the route the lorry
travels, so its remote human operator
will never lose contact.

Information
A British driver pleaded guilty to
dangerous driving after another
driver took video of him sitting in the
passenger seat, while his Tesla S 60 drove
on its own with Autopilot. Autopilot is
classified as level 2 automation.
The incident took place on the M1 near
Hemel Hempstead on May 21st, 2017.
Hertfordshire Police reported that the
car was set to drive at 40mph, and that
the driver had left the steering wheel and
controls unattended, and that there was
heavy traffic on the road at the time of
the incident.
The driver was banned from driving for
18 months, fined £1,800, and ordered to
carry out 10 days rehabilitation, and 100
hours of community service.

Institution licence - St Martins School Essex

Ethical impacts of digital technology

360

'Damage' in this context can include death, personal injuries or damage to
property, subject to certain specific limitations. This provision cannot be excluded
by the terms of insurance policies.

The intention of the Act is for victims of accidents involving AVs to obtain
compensation quickly and easily, without prolonging the process with
complicated product liability claims against the AV technology manufacturers, or
dealing with liability disputes between insurer and manufacturer.

The insurer remains free to pursue the manufacturer for any reimbursement
or contribution if it can be established that the manufacturer is liable for the accident in question. Of course,
manufacturers can claim a "state of the art" defence to escape liability by arguing that they could not have known
about a particular danger or danger in their product at the time of making or selling it.

Liability may be limited, however, where the accident is caused by

• modifications to software made by the injured party, or with their knowledge, that are prohibited under
the insurance policy, or

• failure by the injured party to update safety critical software when it becomes available. Software is
‘safety critical’ if it would be unsafe to use the vehicle without the updates being installed.

The criminal liability of Car vs Human
Where does liability reside when a road traffic offence is committed by an autonomous vehicle in which the vehicle
is driving itself - levels 3-5. The human user(s) is not the 'driver' and therefore should not be liable for any offences
which are committed while the car is in charge. This is the preliminary view of the UK Government which is
proposing a manufacturer authorisation scheme for autonomous vehicles.
The Government proposes that manufacturers who gain authorisation for their vehicles would be liable for road
traffic offences. These could include improvement notices, fines and where necessary suspension or withdrawal of
approval.

Information
The Automated and Electric
Vehicles Act 2018 Act amends
the existing compulsory third
party insurance framework by
extending it to cover the use of
automated vehicles.

Questions

Under the Automated and Electric Vehicles Act 2018 Act
(a) Who can be liable in the first instance for the consequences of an accident caused by the actions of

an automated vehicle (levels 3-5) at a time when it is not under the immediate physical control of a
human being?

(b) Who is liable in the case of an accident that is the direct result of a failure to update safety critical
software:

• The insured person who knows, or ought reasonably to know, that the software to be updated is
safety-critical?

• The insurer?
(c) Who is liable in the case of an accident that is the direct result of software alterations made by the

insured person, or with the insured person’s knowledge, that were prohibited under the policy:

• The insured person?
• The insurer?

An insurer believes that the manufacturer of an automated vehicle that crashed in automated mode,
injurying the insured "driver" and writing off the vehicle, is at fault because the vehicle hit a road barrier
which it should have avoided. What defence might a manufacturer call upon to avoid product liability?

30

31

Institution licence - St Martins School Essex

Ethical impacts of digital technology

361

The General Data Protection Regulation (GDPR) 2018

The Internet of Things (IoT) can connect all types of devices to the
Internet to share information and thereby augment their capabilities and
understanding of their environment. Autonomous vehicles are connected
for this very reason: to share information from their on-board sensors, as
well as from smart phones of pedestrians and cyclists, traffic sensors, parking
detectors, etc.

The GDPR has taken a stronger line on privacy than its predecessor, the
Data Protection Act 1998, by tightening control and imposing greater
accountability on organisations which collect, store and use personal data.
For example, the rules on consent and privacy notices are much tighter.

Autonomous and connected vehicles thus present a problem because large
amounts of data will be collected and communicated via V2V and V2X. For
example, any journey to or from home in a connected vehicle will enable
identification and tracking of individuals and so will involve collection and use of personal data. This data could
potentially be used by any of the following:

• The car
• Insurers
• Other vehicles
• Traffic planners

In some cases, consent to use the data will be required, e.g. by a commercial organisation which has 'purchased'
access to the data and wishes to send marketing to individuals in the vehicle such as "we've noticed that you are
approaching a drive-through restaurant, would you like to get a meal as it is lunchtime?". In another case, insurers
must obtain consent to profile the vehicle owner's driving in order to determine what to charge the owner for
vehicle insurance. Anyone who has visited a website will recognise the all too common message:

" We use cookies and similar methods to recognize visitors and remember their preferences. We also use them
to measure ad campaign effectiveness, target ads and analyze site traffic. To learn more about these methods,
including how to disable them, view our Cookie Policy. By clicking ‘accept,’ you consent to the processing of your
data by us and third parties using the above methods. You can always change your tracker preferences by visiting
our Cookie Policy."

Imagine, if everytime the driver took a trip in their autonomous and connected vehicle, they had to spend the first
ten minutes ticking or unticking consent boxes. This introduces the likelihood that regulators will have to legally
mandate personal data sharing to reduce the inconvenience of consent-giving. But how much data should be
shared?

GDPR requires that the organisation obtaining this consent also records this in order to prove that it has been
given.

GDPR also states that any data collected must be used strictly for purposes which have been notified and consented
to.

Autonomous car maunfacturers will be particularly exposed to GDPR because they will collect and process a lot of
data to enable monitoring of the vehicles that they sell so that they can better understand how the vehicles perform.

• Infrastructure
• Police and other law enforcement agencies
• Commercial organisations

Profiling

Information
Connected vehicle:
A vehicle that connects to other
vehicles and/or devices, networks
and services outside the vehicle
including the Internet, other
vehicles, home, work office or
infrastructure.
Internet of Things(IoT):
The network of physical objects -
vehicles and devices - embedded
with electronics, sensors, software,
and network connectivity that
enables them to collect and
exchange data.

Institution licence - St Martins School Essex

8 Ethical, legal and environmental impacts of digital

362

Cyber security of autonomous vehicles

Cyber attacks on connected, autonomous vehicles have the potential to threaten the safety and privacy of all road
users. As the number of connections of these vehicles with the external environment and third parties increases so
will the risks of cyber attacks. Example 6 shows what was possible in 2016.

The modern car in 2020 has about 100 million lines of code (the Android operating system has 12 million).
Unlike the code in a modern aircraft which has been designed from the top-down to a mathematically rigorous
specification, and quality assured by proof that the code has the properties it ought to have, the code in the modern
car has evolved in a bottom-up way as more and more features became available - see Example 7. Much of the code
in the modern car is legacy code (code that is no longer supported) and some comes from open source libraries on
the Internet. Connecting this code to a network increases the chances of a hacker finding an access point into a
section of the code designed at a time when cyber security was not a threat.

Example 6 - Potential for a cyber attack on an automotive system

In 2016, Hyundai had to update its Blue Link smartphone app to stop it releasing private data that could
be used, potentially, to break into and steal people's cars. The smartphone app uses the Blue Link bluetooth
connection to unlock the car and enable ignition. The vulnerable version of the smartphone app, in a separate
process, used HTTP to transmit personal information such as username, password, PIN, GPS location records,
encrypted with a fixed symmetric key, back to Hyundai. However, this encryption/decryption key could be
extracted by a hacker from the smartphone app's code and used to decrypt the data, transmitted between
smartphone app instance and Hyundai, to obtain the necessary information to break into the car. To get a
copy of the data in the first place, a hacker eavesdrops on the app's network connections. Luckily, Hyundai
became aware of the problem and fixed it before any cars could be stolen.

Example 7 - Another potential for a cyber attack on an automotive system

Professor Phil Blythe, Professor of Intelligent Transport Systems, Newcastle University and Chief Scientific
Adviser for the Department of Transport has stated

"We don't know every line of code that goes into each vehicle or why it's there."

Questions
Why does the General Data Protection Regulation 2018 present a problem for the operation of
autonomous and connected vehicles on roads in the UK.

32

Questions
State two kinds of cyber security threat that autonomous and connected vehicles could be exposed to on
UK roads?

Why should the owner of an autonomous and connected vehicle keep the vehicle's software up to date?

With the exception of new car manufacturers such as Tesla which have designed their autonomous and
connected cars from the ground up, modern cars have evolved over time with software and hardware
being bolted on to enable new features. Explain why the latter's approach to developing autonomous and
connected cars might not be the most cyber attack resilient.

Give two reasons why a cyber attack on a modern passenger jet is less likely to succeed than a cyber attack
on an autonomous and connected car?

33

34

35

36

Institution licence - St Martins School Essex

Ethical impacts of digital technology

363

Environmental impact of autonomous vehicles

Autonomous vehicles have the potential for both positive and negative impacts on the environment.
Significant effects either way depend upon whether autonomous vehicles become commonplace, and the greenness
of the energy they consume. Even electric cars and hydrogen cars need recharging which consumes electrical energy
directly or indirectly, respectively. The hydrogen that fills the "tanks"of hydrogen-powered cars is made before it
goes into the car by splitting water, a process that consumes electrical energy.

Positive impact on the environment

Autonomous vehicles are able to drive closer to each other because their reaction times are faster than human
drivers. This should raise the road capacity which means less congestion. Less congestion means shorter journey
times and therefore lower energy consumption.

Vehicle-to-vehicle communication, vehicle-to-Cloud and vehicle-to-infrastructure enables
• braking and acceleration to be done in a smoother and more energy efficient manner
• an energy-optimal speed to be chosen for each section of a journey
• the most energy-saving route chosen in real time for the journey from A to B.

For example, traffic lights could be better coordinated at junctions to promote steadier flows of vehicles. These
traffic lights which are part of the road infrastructure would need to be connected into the communication network
shared with autonomous vehicles.

The accident statistics from public road trials conducted to date have demonstrated that autonomous vehicles are
safer than human drivers. Manufacturers may decide when autonomous vehicles dominate the highways and are
considerably safer than non-autonomous vehicles that they can dispense with many of the safety features currently
needed in non-autonomous vehicles, e.g side-impact bars. If this is done then the weight of a vehicle can be reduced
leading to a saving in the energy required to move the vehicle.
Negative impact on the environment

Autonomous vehicles should make travelling a lot easier and more convenient if the vehicle drives itself: "Let the car
take the strain"!
However, this is likely to increase the number of miles travelled as car owners decide to make trips that they
wouldn't have done otherwise. It might also encourage people to live further from work resulting in longer car
journeys. Autonomous vehicles would enable people who are unable to drive for whatever reason to take to the
road increasing the number of vehicles on the road or the number of journeys made. In areas such as city centres
where unoccupied parking spaces are difficult to find and/or expensive, an owner of an autonomous vehicle might
find that it is more convenient and cheaper to let the vehicle drive itself around and around instead of parking it.
The net effect would then be that energy consumption might go up because more journeys are being taken overall.
These journeys might also not be energy-efficient because the roads might become even more congested than they
are currently.

In this chapter you have covered:

 ■ The current ethical, legal and environmental impacts and risks of digital technology on society. Where data
privacy issues arise these are considered.

Questions
State two reasons why autonomous vehicles could have a positive impact on the environment.

State two reasons why autonomous vehicles could have a negative effect on the environment.

37

38

Institution licence - St Martins School Essex

Institution licence - St Martins School Essex

Index

365

Symbols

! 76
[] 81
[] 101, 104
{ 57
} 57
& 76
&& 76
• 212
← 93, 127
↦ 92, 126, 365
'+' operator 110
< 74, 333
<= 74, 333
<> 74, 333
!= 63
= 74
== 74
> 74, 333
>= 74, 333
| 76
|| 76
≤ 74
≥ 74
⊕ 212
0x 160
32-bit IEEE 754 floating point 44
64-bit IEEE 754 floating point 44
\n 95
.NET Framework 111
symbol 160

A
abstraction 8, 11
access point 272
access rights 296
accumulator 220
active sensors 355
active verbs 51
actual parameter 51, 54, 127, 141
actuators 221, 346, 350
adaptive cruise control 351
addition 70
addresses 82
admin 295
administrator’s account 295
admin rights 314
ADS 352
advantages of using subroutines 125
Adware 316
AIFF 190

algorithm 1, 2, 6, 13, 15, 16, 18, 19, 83, 88, 121, 142,
 347, 350

algorithm for binary search 24
algorithm for linear search 22
ALU 247
Amazon Elastic Compute Cloud 282
Anaconda 83
analogue 187
analogue signal 188, 189
AND 76, 214, 238
AND logic gate 205
Angry Birds 342
ANSI 101
AnsiChar 41
antilock brake system 221
antivirus 307
anti-virus software 312
API 287
appending to a text file 98
application layer 286, 287
Application Programming Interface (API) 287
application programs 215
application software 215
AQA pseudo-code 149
archiving data 253
argument 55
Arithmetic and Logic Unit 228, 238
arithmetic expression 70
Arithmetic expression 70
Arithmetic operations 70
arithmetic operators 70
ARM Cortex 220
array 80, 81, 88, 131
array data structure 79
array index 81, 82
artificial intelligence 350
Asc function 111
ASC 332
ascending 332
ASCII 39, 94, 101, 111, 176, 177, 194
ASCII character set 176
ASCII code 92
assemble 226
assembler 221, 224
assembly language 219, 220, 222, 223
assembly language code 223
assembly language instruction 221
assembly language program 220
assignment operation 6
assignment operator 6 , 45
assignment statement 46, 57, 45

Institution licence - St Martins School Essex

366

attribute 324
audio 189
audio file 190
audio processing 247
authentication 149, 283, 284, 317
authentication routine 150
authorisation 150, 283
Automated and Electric Vehicles Act 2018 359, 360
Automated Driving System (ADS) 352
automated vehicles 350, 359
automatic 322
automatic software updates 322
autonomous vehicles 350
Autopilot 359
autopilot software 350
AutoRun 297
Average search length 22
AV mode 359

B
B abbreviation for byte 165
backing store 229
backing up data 253
backup management 260
banking security device token 283
base 2 157, 160
base 10 157
base 10 system 157
base 16 158
bespoke software 216
Big Data 339
binary 157, 161, 162, 163
binary arithmetic 169
binary codes 219
binary data 254
binary numeral system 169
binary search 23, 24
binary shifts 173
binary to hexadecimal conversion 163
binding 128
biometric 339
biometric authentication 283, 317
biometric measures 317
BIOS 242
bit 165
Bit 38, 165
bit depth of bitmapped image 183
bitmap 182, 183, 184, 185, 247
bitmap image 182, 184, 186
bitmap image file size 184
Bitmap size 182
Bit pattern 38, 159, 220
Bits 254
black-box approach 300
black-box penetration testing 300
blagging 304

block 142
block-oriented storage device 253
Bluetooth 344
Bluetooth wireless interface 344
Blu-ray disc 254
Blu-ray optical disks 258
body of a procedure 142
body of a subroutine , 51
bool 41
Boolean 41
Boolean data type 40, 41
Boolean expressions 74, 76
Boolean flags 138
Boolean logic 201, 238
Boolean operands 76
Boolean operations 76
Boolean operators 76
boundary or extreme test data 152
boundary test data 153
branch (or jump) 4
bubble sort 16, 17, 31, 36
Bubble sort algorithm 28
bulk acquisition 342
bulk interception 342
bus 228, 237, 243
bus clock 240
bus network topology 268
Bus width 237, 238, 240
byte 101, 165
Byte quantities 166, 168

C
C# 56, 70, 76, 83, 89, 102, 106, 111, 112, 114, 116,

118, 127
cache 245
cache controller 245
cache memory 244
call by address 126
call by reference 126
call by Reference/Call by Address 127
call by value 126, 127
calling a procedure 52
calling statement 130
call a subroutine 51
CAPTCHA 319, 320
carriage return 94, 177
carrier of information 165
CATCH 147
CD-R 254
CD-ROM 254, 297
CD-RW 254
cell 79, 82
Central Processing Unit (CPU) 228, 232
C# function 131
char 41
character 92, 101, 178

Institution licence - St Martins School Essex

367

character → character code 108
character code → character 111
character code form 179
character codes 177
character encoding 176
Char data type 110
CHAR_TO_CODE 110
chipset 237, 243
Chr 111
citizens 342
citizenship 341
clock frequency 242
clock multiplier 242
clock rate 248
clock speeds 247
Cloud 339
cloud storage 259, 260, 261
coaxial cable 268
CODE_TO_CHAR 111
coding tree 194
cohesion 135
cohesive 135
colour depth 183, 185
column 88, 324
combining principles 50, 69
command and control server 315
Comment 3, 67
common fields 324
communication interfaces 346
Compact Disc (CD) 252
comparing linear and binary search algorithms 26
comparison operators 333
compiled code 222
compiler 105, 222, 224
compiling 224
compilation and interpretation differences 225
component of the system 135
components 136, 143
composite data type 131
composite primary key 325
composition 131
compound sentence 136
compressed text 192
compressing text 194
compression 192
computer based implants 346
computer hardware 159
Computer Misuse Act 309, 312
computer network 263
computer program 159
computer virus 159
computer worm 310
concatenation 110
condition 60
conditional automation 353
condition-controlled 59

Conflicker worm 297
connected vehicle 361
connector 3
consent 339
console application 105
Console.WriteLine 105
Const 45
constant 44
constant declaration 44
construct 142
constructing a Huffman tree 197
contiguous 198
control 3
control character codes 94
control characters 94
control codes 177
control flow 125
control structure 142
control unit 228, 247
conversion error 153
cookie Policy 361
copper cable 268
copyright of algorithms 347
count-controlled 59
coupling 137, 140
CPU 228, 235, 242, 251
CPU clock frequency 242, 244
CPU performance 242
cracking 348
crow’s foot 325
Current Instruction Register 239
cyber attack 362
cyber security 291
cyber security of autonomous vehicles 362
cyber warfare attack 300

D
DAT 189
data 39, 79, 92
database 323
data bus 242
data centre 348
data compression 192
Data Controller 339
datagrams 274, 288
data interface 138, 140, 141
Data Processor 339
Data Protection Act 1998 296, 361
data security 282
data structure 79, 80, 93
data subject 339
data type 38, 39, 40, 92
data type casting 111
data type interpretations 42
data types in some programming languages 41
data validation 145

Institution licence - St Martins School Essex

368

datum 39, 93, 126, 166
DB Browser 335
DDoS 292
DDR 243
DDT 352
DDT fallback 352
debug 125, 137, 143, 223, 226
debugging 159
decimal 157
decimal to binary conversion 161
decimal to hexadecimal conversion 162
decision 3
decision flowchart element 4
decode phase 250
decomposition 7
def 54
default password 295
definite iteration , 59
DELETE 334
Deleting data 334
Delphi 70, 76, 83, 89, 112, 114, 115, 127
DESC 332
descending order 332
design 135
destination hardware address 289
deterministic algorithms 350
device drivers 221
Digital Audio Tapes 189
digital computer 230
digitally controllable lighting 350
digital signal 254
Digital Versatile Disc (DVD) 252
digitised image 181
digit key 92
direct access to registers 223
disciplined approach 142
disk block 252, 253
disk buffer , 76, 38, 44, 39, 40, 102, 178
disposal 349
Distributed denial-of-service 292
divide and conquer 33, 135
divide and conquer algorithm 33
division 70
DNS 292
DNS server 292
document virus 311
domain 292
Domain Name Service 292
Dotted decimal notation 276
double 41, 45
Do While 63
do while loop 65
download 349
DRAM 245, 255
driver assistance 353
Dropbox 261

duplicated data 323
duplication 328, 329
DVD+RW 254
DVD-R 254
DVD-RAM 254
DVD-ROM 254
DVD-RW 254
dynamic array 83
Dynamic Driving Task (DDT) 351
dynamic linked libraries 310

E
eavesdropping 269
edge cases 350
EDSAC 159, 219, 229
EDVAC 229
Edward Snowden 342
EEPROM 255
efficiency of algorithms 16
electrical signal 187
element 81, 87
email confirmation 321
email virus 312
embedded computer systems 222
embedded flash 255
embedded operating system 262
embedded system 221, 261, 262
Embedded system 261
encryption 150, 284
End Module 53
End Sub 53, 138
end-system 277
end-to-end encryption 343
end-to-end principle 275
engine management system 221
ENIAC computer 229
entity 324
entity relationship diagram 325
entry point 142
environmental benefits 349
environmental impact 348, 363
environmental information 166
equal to 74, 75
E-R diagram 325, 327
erroneous test data 153
error 137, 147
Ethernet 271, 289
Ethernet bus protocol 271
ethical concerns 344
ethical dilemma 357
ethical dimension of data processing 338
exception handling 146, 147
exceptions 95
executable binary codes 159, 220
Execute phase 250
execution times 18

Institution licence - St Martins School Essex

369

existence check 147
exit point 142
expiry date 321
exponent 166
expressions 74
external hardware devices 70, 74, 76, 79, 92, 101, 121,

124, 135
extraction 82

F
facial features 317
facial recognition 317
factual information 166
False 76
Fetch-Execute cycle 250
Fetch phase 250
field 92, 324
field name 324
Fifth Generation (5G) 356
file 93
file access error 147
file handle 95, 97, 98
file handle variable 95
file mode 98
filename 93
file structure 95
File Transfer Protocol 279
fingerprint pattern 317
firewall 285
fixed-size coding scheme 193
flash-based solid state drives 255
flash memory 255, 261
flash ROM 236
flat file database 328
float 41, 44
floating point data type 40
floating point quotient 70
FloatToStr 117
float to string 116
flowchart 3, 119
flow of control 142
foreign key 325, 329
foreign key mechanism 325
for loop 59, 61, 67, 88
formal parameter 55, 126, 54, 126, 141
formal parameter of a subroutine 51
Fortran 222
Fourth Generation (4G) 356
frames 271
frequency/data pair 198
FROM 330
FTP 279
FTP client 279
FTP server 279
full automation 353
fully-automated vehicle 351

function 52, 54, 55, 125, 130, 131, 138, 141, 143
functional cohesion 136, 137
functional description 136
function call 82
function return 143
functions of an operating system 217

G
G abbreviation of Giga 166
gateway 344
GB abbreviation of Gigabyte 167
GDPR 296, 339, 361
General Data Protection Regulation 2018 339, 361
generalisation problem 350
general purpose application software 215
general purpose computer 221, 262
genetic data 339
geolocation 341
GET 288
GET / 278
Gi abbreviation of Gibi 168
GiB abbreviation of Gibibyte 160
gibi 168
GigaHertz 244
global variables 138, 143
good design 135
Google data centre 259
Google Drive 261
Google glass 345
Go To 142
gotoless programming 142
GPS 355
GPU 262
graphics controllers 243
graphics processor 262
grayscale bitmap 198
greater than 74, 75
greater than or equal to 74, 75

H
hacker 261, 291, 296
hacking 348
hand trace, hand-trace 48, 88
hand tracing, hand-tracing 15, 48
hard-coded 150
hardware 220
Hertz 189
hexadecimal 158, 159, 160, 164
hexadecimal as shorthand for binary 159
hexadecimal to binary conversion 162
Hierarchy chart 140, 141
high automation 353
high definition maps 355
higher coupling 138
high-level imperative programming languages 69
high-level language 219
High-level programming language 222

Institution licence - St Martins School Essex

370

highly-cohesive 136
HLL programming 222, 223
host 276, 286
host computer 286
hostID 276
house-keeping 136
HTML 278
HTTP 278
HTTP application-layer protocol 287
HTTP GET 278
HTTP GET / 278
HTTP GET / request 278
HTTPS 278, 284
HTTPS application-layer protocol 287
Huffman code 195, 196
Huffman coding 193, 194
Huffman coding tree 194, 197
Huffman tree 195
hyperscale computing 338
Hypertext Markup Language 278

I
Identification 150, 283
identification check 150
identifier , 67
identity theft 301
If statement 49
image processing 247
image size 182
Image size 182
immutable 105
IN 127, 129, 141
inconsistencies in data 328
indefinite iteration 59, 62
Indentation 143
index 83, 104, 108
index range 110
infinite loop 62
Infinite loop 62
information 39, 165, 339
information = data + meaning 166
information types 166
infrared light waves 355
initialiser , 60
initialising variables 44
in line 125
inline 223
in line flow of control 124
in-memory sorting algorithm 36
inner for loop 66
IN-OUT 141
INOUT 127, 129, 130
IN-OUT parameter 141
INOUT parameter 126
IN parameter 126, 141
input 1, 3, 13

Inserting data 334
INSERT INTO 334
instructional information 166
instruction cycle 250
instruction set 220, 223
int 56
integer 41, 58
Integer data type 39
integer division 70, 71
integer division and integer remainder operators 72
integer division operator 71
integer quotient 70
integer remainder operators 72
integer to string 116
integrity checks 145
interface 129
internal buses 247
internal design of the components 143
internal structure of a processor/central processing

unit 239
internet 266
Internet 266, 277
Internet connection records 342
Internet Message Access Protocol 280
Internet of Things (IoT) 221, 295, 339, 345, 361
Internet or IP (Internet Protocol) layer 286, 288
Internet Protocol 275
internetworked 266
interpreter 224
interpreter vs compiler 225, 226
INT_TO_STRING 116
invalid input 154
Investigatory Powers Act 2000 342
Investigatory Powers Act 2016 342
I/O controller 226, 232
IoT 295, 339, 346
IP address 276, 292
IP layer 288
IPv4 276
IPython 84
iris pattern 317
ISP 285
iterating 86, 88
iteration 46, 142
iteration statements 46
iterator 60

J
Java , 70, 76, 83, 89, 104, 106, 111, 114, 116, 57

K
k abbreviation for kilo 166
kB abbreviation for kilobyte 167
keyboard 92
keylogger 315
keyword 53
Ki abbreviation for kibi 168

Institution licence - St Martins School Essex

371

KiB abbreviation for kibibyte 245
kibi 168
Kibibyte 245
kibi Ki 168
kilo k 168

L
L1 cache 245
L2 cache 245
L3 cache 246
LAN 265, 289
lane-keeping/lane-following assistance 351
language-defined subroutine 124
language keyword 44, 54
layered organisation 286
layers of software 215
least privilege principle 296
LEN 82, 88, 105
length checks 146
Length function 105
length of a string 105
Less Than 74
Less Than Or Equal To 74
Level 0 351, 353
Level 1 351, 353
Level 2 352, 353
Level 3 352, 353
Level 4 352, 353
Level 5 352, 353
Levels 3-5 automated vehicles 359
library of subroutines 125
lidar 355
lifetime 132l
linear search 21
line feed 177
line feed character 95
link layer , 289
link tables 327
list 83, 131
Local Area Network 265
local storage 261
local variable 132, 133, 135, 143
location 82, 126
lock frequency 243
logical shift left operation 172
logic circuit diagrams 207
logic errror 155
logic gate 201, 203
logic gate circuit 206
Logogram-based language 178
loop 46
loop body 46
loop control variable 61, 81, 86, 60, 105
loop flowchart 4
loop terminating condition 59
loose coupling 138

loosely coupled 135, 137, 143
loss of data 260
loss of privacy 260
low coupling 140
low-level language 219
low-level programming language 219

M
M abbreviation for mega 166
MAC address 277, 285, 289
MAC address filtering 285
machine code 219, 222, 223
machine code instruction 159, 220, 250
machine code language instruction 221
machine code language program 220
machine code program 250
machine dependent 223
machine instruction 159
machine learning 247
machine-learning algorithms 350
macro 311, 312
macro virus 312
magnetic core memory 233
magnetic disk 252
magnetic disk drives 257
Magnetic disks 258
magnetic hard disk drive (HDD) 252
magnetic storage 252, 258
magnetic tape 252, 253
Main() 53
main memory 228, 230, 232, 235, 251
malicious attachments 306
malicious code 292, 309, 310
malware 309, 310
malware vector 314
many-to-many 325
many-to-one 325
matplotlib 84
matrix 87
maximum search length 26
MB abbreviation for megabyte 167
meaningful identifier name 67, 68
meaningful identifiers 143
meaning of value 40
Mebibyte 245
mebi Mi 168
mega M 168
memory addresses 230
Memory Buffer Register 239
memory bus 243
memory cell 233
memory controller 243
memory footprint 222
memory location 160, 233
memory location 234
memory map 126

Institution licence - St Martins School Essex

372

merge sort 16, 17, 35
merge sort algorithm 33, 34
messages 287
metadata 190
Mi abbreviation for mebi 168
MiB abbreviation for mebibytes 245
microchips 346
Microsoft’s Azure IoT hub 344
misconfigured access rights 296
mnemonic 220
model 8
modelling data by variables 44
modelling relationships 324
modularisation 133
module 53, 135, 136, 137, 138, 140
moral algorithm 356, 357, 358
motherboard 240, 240
multi-level caches 245
multiple access medium 272
multiple-core CPU 248
multiple-cores 247
multiplication 70

N
NAND flash memory 257
nested for loop 66
nested iteration statements 66
nested selection statements 65
NetID 276
network adapter 271, 272
networking protocols , 286, 287
Network Interface Card (NIC) 271, 272, 289
Network or IP layer 288
network protocol 271
network security 282, 284
newline 95
newline character 94, 97
non-embedded system 262
non-redundant duplication 329
non-text files 94
non-volatile 93, 251, 255
non-volatile memory 236, 261
non-volatile storage 256
normal or typical test data 152
normal test data 153
NOT 76, 214
not equal to 74, 75
NOT logic gate 203, 204
number base 157
Numeric Python 83
numpy 83, 84

O
object code 224
OEM 101
offset 101, 102, 104, 107, 108
off-site backups 282

one-based string indexing 104
one-dimensional array 80, 82, 83, 86
OneDrive 261
one-to-many 325
one-to-one 325
ONE-to-ONE mapping 221
open source software 347
operand 76, 140
operating system 92, 262
operating system routines 223
Operating system software 216
operation 3, 140
Operational Design Domain (ODD) 352
operation code mnemonic 221
operator precedence 77
optical disc 254
optical storage 258
OR 76, 214, 238
Ord 110, 111
ordering a result set 332
ORDER BY 332
ordinal data type 60
ordinal number 104
OR gate 205
OR logic gate 205
oscillator 240
OUT 130, 130, 141
outdated code 298
outer for loop 66
out of date software 298
out of line 125
out of line block of code 124
out of line flow of control 124
OUT parameter 141
output 1, 13
OUTPUT 5, 93

P
packets 277
packet sniffing 269
packet switching 277
PAN 264, 265
Pan Area Network 265
parameter list 140
parameters 11
partial automation 353
Pascal 53, 70, 76, 83, 89, 112, 114, 115, 125, 127
Pascal/Delphi 116, 117
passive 355
passive sensors 355
password 294, 318
password check 150
password managers 318
password systems 318
patch 298
patches 322

Institution licence - St Martins School Essex

373

patent 347
penetration test 299
penetration tester 299
penetration testing 299
pentester 299, 300
peripheral 232, 262
peripheral devices 232
Personal Area Network 264
personal data 338, 339
pharming 308
phishing 305
phishing attack 306
phishing email 305
phishing scams 307
physical bus network 268
physical phenomenon 166
picture element 181
pixel 159, 181, 184
platter 252
Position 110
POSITION 110
PowerShell 303
powers of 2 167
powers of 10 166
practical obscurity 339
predicate 331
presence check 146
pretexting 304
primary colour 183
primary key 325
primary storage 251
principles of structured programming 142
Prism 342
privacy 342, 344, 348
privacy notices 339
private 44
PRNG 121
procedure 52, 124, 125, 130, 138, 141, 53
procedure interface 54
procedure name 52
procedure name 54
procedures and functions 52
process 13, 286, 287, 309
process abstraction 10, 11
processing 13
processor 220, 226, 232, 243, 251
processor cores 247
processor family 223
profiling 339, 361
program 53
program block 124, 125, 143
program code 1
program crash 147
program source code 143
program statement 127
program structure 141

proofs of correctness 350
proprietary software 347
protocol software 286
protocol stack 286
pseudo 3, 6
pseudo-code 9, 13, 46, 47, 48, 49, 66, 67, 68, 73, 74,

81, 86, 87, 88, 91, 92, 93, 110, 111, 112, 114,
116, 119, 134, 146, 153, 155

pseudorandom number generator 121
pseudorandom numbers 121
public 44
public key cryptography 284
public Wi-Fi hotspots 343
punched paper tape 229
punch paper tape 220
pure binary representation 179
PyCharm 17
Python 43, 54, 70, 76, 83, 89, 94, 97, 112, 114, 116,

117, 127
Python object 128

Q

query 331
querying a database 330
quotient 73

R

radar 355
Radio frequency identification (RFID) 345, 346
RAM 38, 43, 93, 236, 232, 232
Random Access Memory 236
RANDOM_INT 123
randomizing the seed 121
random number generation 121
random numbers 121
random.seed 121
random sequence 121
range 61
range check 146
ransomware 292
Raptor 10
Raptor flowchart 12
readability 143
reading from a text file 94
read-write head 252
real/float and integer division 71
real number or float division 70
REAL_TO_STRING 116
record 91
record data structure 79
record type 93
reduction in use of paper 349
redundancy 192
redundant duplication 329
register 160, 238, 247

Institution licence - St Martins School Essex

374

relation 326, 330
relational database 323, 324, 327
relational operators 74
relationship 324, 325
reliability 151
remainder 72, 73, 161
removable media 297
repeat loop 62, 63
repeat until 59
repetition 46
representational abstraction 8
request message 278
resolution 182
response message 278
Result 130
result set 331
retention notice 342
retina pattern 317
retina scanner 317
retrieving data from a single table 330
return expression 130
returning a result 130
RETURN mechanism 127
return statement 135
return type 56, 58
RFID tags 346
RIOT 341
risks of networking 264
RLE 198
program source code 143
role of a compiler 224
role of an assembler 224
role of an interpreter 225
ROM 236
router 277, 288
routine 10, 150
row 88, 324
Run Length Encoding (RLE) 198
RunningTotal 48

S

safety-critical system 36
sample 188
sample resolution 190
sampling rate 189
search condition 331
search length 22
secondary storage 93, 229, 251
secondary storage devices 101
sector 253
sector address 253
Secure Sockets Layer (SSL) 278
security 282, 344
SELECT 330, 332
SELECT * FROM 336
selection 50, 49

selection statement 65, 124
self-contained 133
self-contained block of instructions 50
self-describing identifiers 68
self-driving Uber car 351
semi-autonomous vehicles 359
sensors 221, 344, 345, 350
sequence 38, 49
sequence of instructions 51
sequence statements 49
SET 335
shifting bits 172
shift left 172
shift operation 172
shift right 172
shouldering 304
shoulder surfing 304
side-effect 127
simple calculator 140
Simple Mail Transfer Protocol 280
single character value 110
Slammer worm 298
slice 109
Small-Scale Experimental Machine 229
smart lighting 350
smart systems 350
social engineering 301, 303
social engineering threats 291
society of citizens 341
socket API 287
software 200, 200
software architecture 140, 143
software artefact 135
software classification 215
software modules 141
software patch 298
software system 136
software updates 298
solid state 258
Solid-state disk (SSD) 252, 256, 257
solid state storage 255
sorting 28
sorting algorithms 17, 28
sound 187, 189
sound file 159
sound file size 190
source code 224
source hardware address 289
spam 292
spambot 321
special control character 94, 97
special purpose applications software 216
spoofer 285
Spyder 83
spyware 315, 316
SQL 330

Institution licence - St Martins School Essex

375

SQLite 335
SQL Tutorials 335
SRAM 245, 255
SSD 258
SSD drive 257
SSD storage 257
SSD vs other flash-based devices 258
SSL 278
star network topology 268
static 44, 56
static RAM 238
stealing credentials 305
stepwise refinement 143
stereo camera 355
StingRay equipment 341
storage location 220
storage service 259
stored program computer 229
stored program digital computer 159
storing 82
str 41
string 39, 41, 101, 105, 112, 114
string conversion error 154
string conversion operations 112
string-handling operations 101
string indexing 101, 105
string operations 101
string to float 114
STRING_TO_INT 112
string to integer 112
string value 101
string value 105
STRING_TO_REAL 114
strip() 95
strongly typed 43
strongly typed language 55
strong password 296
StrToFloat 115
struct 91
structure 91, 93
structured data type 131
structured design 135, 140, 142, 143
structured programming 135, 142, 143
Structured Query Language 330
structured result 55
STUXNET malware 292, 310, 311
Sub 53, 138
subroutine 10, 50, 51, 52, 119, 125, 127, 132, 134, 135,

 137, 138, 143, 147
SUBROUTINE 126
subroutine call 127
subroutine interface 129, 135
subroutine name 51
subroutine parameter 126, 127, 129, 138, 143
subroutines 11, 124, 130, 135, 140
subset 108

substring 108
SUBSTRING 108
subtraction 70
successive division 162
surface address 253
symbolic name 44, 220
symbolic name for constant 44
syntax error 155
system bus 234
system bus 228, 237
system clock 240
system clock frequency 243
system programs 215
system software 215

T

T abbreviation for tera 166
tab 94
table 324
target ads 361
TB abbreviation for terabyte 167
TCP 273, 288
TCP/IP 290
TCP/IP model 286
TCP/IP protocol stack , 287
TCP/IP protocol suite 286
TCP/IP socket 288
TCP/IP stack 288
TCP segments 273, 288
TCP socket 279
tebi 168
Tempora 342
temporary session key 343
terminal 3
terminating condition , 46
Tesla Autopilot Model S 354
test case 152, 154, 155
test data 152
testing 151
test plan 152, 153, 155
test results 152
text 92, 93, 177
text editor 94
text file 94, 95, 177
theft of computer code 348
Ti abbreviation of tebi 168
time efficiency 19
time efficiency of an algorithm 19
timing 240
timing signals 240
top-down design 7
topology 268, 270
trace table 66, 83, 88
trace table 73
track 253
track address 253

Institution licence - St Martins School Essex

376

tracking cookies 315
translator 222
Transmission Control Protocol (TCP) 273, 287
transport layer 287, 288
trap 147, 153, 154
trojan 313
trojan horse 292
trojan program 313
True 76
truth table 202, 203, 204, 205, 206
try catch 95
TRY CATCH ENDTRY 146, 147
TryParse 112
two-dimensional array 87, 88, 89
two-dimensional integer array 89
two-factor authentication 296, 317
two symbol code 38
type check 146
type of result returned 131

U

UDP (User Datagram Protocol) 274
ultrasonic waves 355
unauthorised access 282
unauthorized access 301
uncompressed text 192
unicode 41
Unicode 101, 111, 178
Unicode character 106
Unicode code point 178
uniform addressing scheme 277
United Kingdom Intellectual Property Office 347
unit of information 165
units of storage 166
unpatched 298, 322
UPDATE 335
updating data 335
USB flash drive 297
User Data Protocol (UDP) 287
USERINPUT 92
using local variables 133
UTF-8 94, 178
UTF-16 101, 178
utility programs 216

V

validate 145
validation 145
validation code 147
VALUES 334
variable 6, 43, 101, 130
variable declaration 43, 44
variable-size coding scheme 193
VBA 311
VB.Net 53
VB.NET 63, 70, 76, 89, 102, 106, 112, 114, 116, 117, 125, 127

VDU 177
vehicle-to-cloud 356
Vehicle-to-Everything (V2X) 355
vehicle-to-infrastructure 363
vehicle-to-IoT 356
vehicle-to-network 356
Vehicle-to-Vehicle (V2V) 355, 356
vein pattern 317
vein recognition 317
verification 321
video processing 247
virtualisation 259
virtual machine 224
virus 311
visibility 132, 56, 58
Visual Basic for Applications 311
Visual C# 2015 103
Visual Display Unit (VDU) 92, 182
Visual Studio 56
Visual Studio 2015 56
voice pattern 317
voice recognition 317
void 56
volatile 93, 251
volatile memory 236
volatile RAM 261, 262
von Neumann 231, 234
von Neumann architecture 228, 230

W
WAN 266
WAV 190
WAV audio file 190
waveform 187
weak passwords 293
wearables 344, 345
wearable technologies 344
WhatsApp 343
WHERE 331, 332
while 59
WHILE 10
while loop 62, 63, 83, 98
While loop 83
white-box penetration testing 300
whitespace 94, 95, 112, 114
whole number 163
Wide Area Network 266
Wi-Fi 272
Wi-Fi hotspots 343
Wi-Fi Protected Access 284
Wi-Fi Protected Access II 284
wildcard character * 330
Windows Registry 297
wired LAN 272
wired networks 267
wireless broadband networks 343
wireless LAN 272
wireless networks 267, 295
Wireless Personal Network 344
WLAN 272
working from home 349

Institution licence - St Martins School Essex

377

Worm 297
worst-case complexity 36
WPA 284
WPA2 284
WPAN 344
write mode 97
writing to a text file 95

X
XOR 214, 238
XOR logic gate 205, 212

Y

Z
ZEROBASEDSTRINGS 104

Institution licence - St Martins School Essex

Institution licence - St Martins School Essex

Institution licence - St Martins School Essex

Institution licence - St Martins School Essex

GCSE Computer
Science FOR AQA 8525

Educational Computing Services Ltd
42 Mellstock Road
Aylesbury
Bucks
HP21 7NU
Tel: 01296 433004
www.educational-computing.co.uk

Cover picture © Dr K R Bond 2018
Penang Hill, West Malaysia

This textbook covers GCSE Computer
Science for AQA in an accessible and
student-friendly way.

Additional resources to accompany the
text will be available from our web site
www.educational-computing.co.uk.
Please note that these resources have not
been entered into the AQA approval
process. Only the student textbook has
been approved.

About the author

Kevin Bond has many years of
teaching and examining
Computing/Computer Science
experience.
He has worked at the interface
between Science, Computer
Science and Engineering, first as a
Research Scientist, then as a Senior
Development Engineer for a major
Defence Contractor and then as a
Senior Systems Analysis for a major
Telecommunications company.

This book has been
approved by AQA

ISBN 978-1-8381026-1-6

Institution licence - St Martins School Essex

http://www.educational-computing.co.uk
http://www.educational-computing.co.uk

